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Abstract

This dissertation presents the development and evaluation of a Lagrangian stochastic
model of vertical dispersion of trace material in the convective boundary layer (CBL).
This model is based on a Langevin equation of motion for a fluid particle, and assumes
the fluid vertical velocity probability distribution is skewed and spatially homogeneous.
This approach can account for the effect of large-scale, long-lived turbulent structures
and skewed vertical velocity distributions found in the CBL. The form of the Langevin
equation used has a linear (in velocity) deterministic acceleration and a skewed random
acceleration. For the case of homogeneous fluid velocity statistics, this "linear-skewed"
Langevin equation can be integrated explicitly, resulting in a relatively efficient
numerical simulation method. It is shown that this approach is more efficient than an
alternative using a "nonlinear-Gaussian"” Langevin equation (with a nonlinear
deterministic acceleration and a Gaussian random acceleration) assuming homogeneous
turbulence, and much more efficient than alternative approaches using Langevin equation
models assuming inhomogeneous turbulence. "Reflection” boundary conditions for
selecting a new velocity for a particle that encounters a boundary at the top or bottom of
the CBL were investigated. These include one method using the standard assumption that
the magnitudes of the particle incident and reflected velocities are positively correlated,
and two alternatives in which the magnitudes of these velocities are negatively correlated
and uncorrelated. The constraint that spatial and velocity distributions of a well-mixed
tracer must be the same as those of the fluid, was used to develop the Langevin equation
models and the reflection boundary conditions. The two Langevin equation models and
three reflection methods were successfully tested using cases for which exact, analytic
statistical properties of particle velocity and position are known, including well-mixed
spatial and velocity distributions. Simulations of laboratory experiments of CBL
dispersion show that both homogeneous Langevin equation models can simulate the
important aspects of dispersion in the CBL. The negatively-correlated-speed reflection
boundary condition simulates the observed dispersion of material in the CBL
significantly better than either of the other two reflection methods.



Vi



Acknowledgments

| am very grateful to Dr. Donald Ermak for the valuable guidance and support he has
given me throughout this research. | am also grateful to Prof. John Carroll for the
guidance and helpful suggestions he has given me, and to the other members of my
committee, Professors Kyaw Tha Paw U, Roger Shaw, and Wolfgang Kollman, for their
helpful comments and thoughtful examination of this work.

| would like to express my gratitude to Dr. Thomas Sullivan, Dr. James Ellis, Dr. Marvin
Dickerson, Dr. Paul Gudiksen, and many other colleagues at Lawrence Livermore
National Laboratory, for their support and encouragement. | thank Howard Rodean for
his thorough review of previous work on Lagrangian stochastic modeling of turbulent
dispersion, which was useful during my introduction to this subject. Support for this work
was received from the Atmospheric Release Advisory Capability program of the U.S.
Department of Energy in the Atmospheric Science Division of the University of
California, Lawrence Livermore National Laboratory under contract number W-7405-
Eng-48.

Discussions with Dr. Brian Sawford, Division of Atmospheric Research, CSIRO,
Australia, were very helpful during this research. | also thank Dr. Erik Naslund for
helpful dialogue, and for support for a guest researcher visit at the National Defense
Research Establishment, Umed&, Sweden, during which some of this work was done.

Understanding, patience, and support from my wife, Sharon, and daughters, Samantha
and Blaire, made this work possible.

Vii



viii



1

Introduction

This dissertation presents the development and evaluation of a Langevin equation model
for numerically simulating vertical dispersion of material in the convective atmospheric
boundary layer. Dispersion models are important tools for assessing the health and
environmental impacts of air pollutants. Convective boundary layers are prevalent during
daytime, fair weather conditions over land, and are characterized by large turbulent
structures with size comparable to the depth of the boundary layer (typically, 200-2000
m). The turbulent properties of the convective boundary layer, or CBL, cause the vertical
dispersion of material to be dramatically different from that in other types of boundary
layers (e.g., stable, nighttime boundary layers or near-neutral boundary layers during
cloudy, strong-wind conditions). The Langevin equation for the motion of a fluid particle
provides a means to simulate the possible trajectories of particles in complex turbulent

flows, such as those found in the CBL, and to calculate the dispersion of trace material.

Dispersion of material in the CBL is dominated by large-scale, coherent turbulent
structures or eddies. Strong updrafts or thermals cover approximately 40% of the
horizontal area in the CBL, while compensating weaker downdrafts cover 60% of the
area. This results in a positively skewed vertical velocity distribution. Because of the
skewed vertical velocity, pollutant emitted into the CBL from an elevated, continuous
source, has a higher probability of being emitted into a downdraft. Due to the large-scale
coherent nature of the circulations, neutrally buoyant material emitted into a downdraft is

typically carried directly to the surface. The result is that the height of the maximum
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time-average concentration decreases with downwind distance. In contrast, material from
a near-surface source either enters an updraft immediately or travels horizontally near the
surface until it becomes incorporated in an updraft. After a short time, this results in a
dramatic increase in the height of the maximum concentration with downwind distance.
This behavior is not found in neutral or stable boundary layer turbulence which is
characterized by smaller turbulent structures and unskewed vertical velocity distributions.
For an elevated source, significant underprediction of ground-level pollutant
concentrations can occur if the unique properties of CBL turbulence are not taken into
account in dispersion models. CBL turbulence properties and dispersion phenomena will

be reviewed in Chapter 2.

Lagrangian stochastic models based on the Langevin equation provide a means to
determine the possible trajectories of fluid particles in a turbulent flow. The Langevin
equation of motion for a particle equates the net acceleration on a particle to the sum of a
deterministic acceleration and a random acceleration. Integration of the Langevin
equation in time provides a means of calculating the time evolution of the velocity of a
particle, and spatial trajectories. Using Monte Carlo simulations, ensemble-mean air
concentration can be estimated from many independent realizations of possible

trajectories of particles released at a source.

The Langevin equation modeling approach has been used successfully to simulate tracer
dispersion in complex turbulent flows which have large-scale structures, and
inhomogeneous and non-Gaussian turbulent properties (Wilson and Sawford, 1996).
Because a Langevin equation model simulates the correlation in time of a particle’s
velocity, it can be used to model dispersion at travel times less than (and greater than) the

Lagrangian velocity correlation time (typically 1 to 15 min in the CBL). This makes the
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Langevin equation a viable model for simulating dispersion at any time typically of

interest.

The Lagrangian stochastic approach using the Langevin equation has some significant
advantages, compared to other approaches. Lagrangian stochastic methods require only
information on the statistical properties of the velocity field. In contrast, Eulerian
approaches based on the Reynolds-averaged conservation of species equation require
information on the joint moments of velocity and concentration. Closure assumptions that
are needed to determine these joint moments depend on the concentration distribution,

and are not universally valid (Deardorff, 1978).

Unlike Langevin equation models, Eulerian or Lagrangian models based on the diffusion
equation (which use an eddy diffusivity to parameterize the diffusive properties of
turbulence) are only applicable for times much greater than Lagrangian correlation time,
1, of the fluid velocity (e.g., Sawford, 1985). At these times, material from a point source
will already be diluted throughout the depth of the CBL. Therefore, the advection-
diffusion equation is not a valid approach to simulating dispersion of material in the CBL,

except for the initial diffusion of sources very near the surface whéecomes small.

Numerical methods based on the Lagrangian approach have advantages because they are
meshless. In contrast, Eulerian methods can suffer from numerical diffusion, may not
conserve mass, and may produce negative concentrations (Seinfeld, 1988). Lagrangian
methods can resolve point sources without additional computational cost or an
approximate sub-grid parameterization, unlike Eulerian methods or hybrid Eulerian-
Lagrangian, particle-in-cell methods (e.g., Lange, 1978). Unlike particle-in-cell methods,
the accuracy of an individual particle trajectory calculation using a Lagrangian stochastic

model is not dependent on grid resolution or the number of trajectories computed. In
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addition, first-order chemical reactions or radioactive decay can be handled simply in a

Lagrangian frame using functions of material age.

Simplified statistical models of vertical dispersion in the CBL (e.g., Weil, 1988) have
been fairly successful in simulating dispersion from elevated sources in the CBL by using
the skewness of vertical velocity at the source height and assuming a uniform horizontal
mean wind velocity, and an infinite Lagrangian time scale. A Langevin equation
approach, however, is not limited to these simplifying assumptions, and can be applied to

other turbulent flows.

Langevin equation models that attempt to resolve the inhomogeneous properties of the
vertical velocity fluctuations near the top and bottom of the CBL have been fairly
successful (e.g., Luhar and Britter, 1989; Weil, 1989), but have a practical limitation that
small numerical integration time steps are required for accurate solutions. It has been
recognized that simplified Langevin equation models that assume skewed but
homogeneous velocity statistics can capture the important aspects of dispersion from
sources in the CBL (Hurley and Physick, 1993), and can use significantly longer time

steps.

The use of longer numerical integration time steps makes dispersion models more
efficient, and more useful for practical applications. For example, dispersion model
predictions of air concentration patterns following accidental releases of hazardous
material need to be made in a timely manner. Efficiency is also important for applications
requiring a long numerical integration period (e.g., continental-scale dispersion from a

Chernobyl-type accident).
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The work presented in this dissertation further investigates the ability of homogeneous,
skewed Langevin equation models to simulate CBL vertical dispersion. Previous
Langevin equation models will be reviewed in Chapter 3. The development of a Langevin
equation model for homogeneous, skewed turbulence will be presented in Chapter 3. This
model is based on a "linear-skewed"” Langevin equation, which assumes that the
deterministic acceleration is a linear function of velocity and the random acceleration is
non-Gaussian and skewed. As discussed by Thomson (1984, 1987), Sawford (1986) and
Sawford & Guest (1987), there is a fundamental difficulty in applying this form of the
Langevin equation: all the cumulants of the random term are non-zero and when higher
order cumulants are important it is difficult to generate such a random variable. For
inhomogeneous turbulence, it appears this difficulty has not been overcome. However,
for the simplified case of homogeneous skewed turbulence, it will be shown that a linear-
skewed Langevin equation model can be successfully developed. A model, used by
previous investigators, based on a "nonlinear-Gaussian" form of the Langevin equation
(which has a non-linear deterministic acceleration and a Gaussian random acceleration)

will also be presented in Chapter 3 for comparison purposes.

Reflection boundary conditions consistent with the assumption of homogeneous, skewed
turbulence are presented in Chapter 3. In a homogeneous Langevin equation model,
interactions with boundaries must be handled by “reflection”, the selection of a new
velocity given the incident velocity. A sound basis for reflection boundary conditions in
skewed turbulence was described by Thomson and Montgomery (1994), and was used in
this work. In addition to a method using the standard assumption that the magnitude of
the incident and reflected velocities are positively correlated, two alternatives were

developed and tested.
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Chapter 4 presents the results of tests, comparisons and evaluations of the two Langevin
equation models and the three reflection boundary conditions using (a) simulations of
cases for which analytic statistical properties of particle position and velocity are known,
including well-mixed spatial and velocity distributions and (b) results of Willis and
Deardorff's (1976b, 1978, 1981) laboratory experiments of CBL dispersion. A summary

and the conclusions resulting from this work are presented in Chapter 5.
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Convective Boundary Layer

Convective boundary layer (CBL) turbulence properties and dispersion phenomena will
be reviewed in this chapter. Much of the foundation for the current understanding of CBL
turbulence was laid by Deardorff (1970a, 1970b, 1972, 1974a, 1974b), who studied the
CBL using 3-D numerical large-eddy simulations (LES). Much of our current
understanding of tracer dispersion in the CBL comes from Willis and Deardorff's (1976a,
1976b, 1978 & 1981) water tank experiments, and from Lamb’s (1978a, 1978b, 1982)
numerical experiments using a Lagrangian dispersion model and Deardorff's LES data. In
Section 2.1, turbulent structures in the CBL are reviewed. In Section 2.2, relevant
turbulence scaling relationships are presented and discussed. The "universal" small-scale
properties of turbulent motions are reviewed in Section 2.3. In Section 2.4, observed CBL

dispersion phenomena are reviewed.

2.1 Turbulent structures in the CBL

The properties of turbulence in the CBL are dominated by large, long-lived turbulent
structures that are driven by buoyancy forces associated with heating and/or evaporation
from the surface. Fig. 2.1 shows a schematic diagram of the CBL. The dominant large
scale turbulent structures have a depth comparable to the boundary layeh,deptbh

is equal to the average height of the capping temperature inversidypical values

range from 200 m to 2 km). These structures have relatively strong vertical velocities (on

the order of 1 m-$) and long time scales (1 to 15 min for air to circulate through the
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depth of the boundary layer). As a result, material released into the CBL is mixed
relatively quickly throughout the depth of the boundary layer. For example, the time
required for this is one to two orders of magnitude less than in neutral boundary layers

(Deardorff, 1972).

—'
::><¥\H\KT7‘/’>‘;¢§T7‘/’Z“
AR TR RIS L) e
H‘%#/Z v v 2 TT* Surface
//// 22\

Fig. 2.1. Schematic diagram of the convective boundary layer showing the mean
potential temperature profiled(z); the mean wind profilefi(z) (darker vectors);

deviations from mean wind (lighter vectors), boundaries of plumes and thermals; and
height of temperature inversiog, (after Wyngaard, 1985; Williams and Hacker,
1993; Briggs, 1988).

The time- or area-averaged structure of the CBL can be divided into four layers: surface
layer (z<|L|), free convection layerl(| < z< 0.1h), mixed layer 0.1h<z<0.8h), and
interfacial or entrainment layeO(8h < z<12h) (Holtslag and Nieuwstadt, 1986l | s

the absolute value of the Obukhov length, and is the height above which buoyant
production of turbulent kinetic energy dominates, in contrast to shear production closer to
the surface. The surface layer is characterized by an unstable, superadiabatic temperature
profile, upward turbulent heat flux, and nearly logarithmic wind profile. The mixed layer

is characterized by well mixed, relatively uniform profiles of potential temperature and
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wind velocity, and by upward heat flux that decreases approximately linearly with height.
The entrainment layer is characterized by a stable temperature profile, downward heat
flux that decreases to near zero at the top, and mean quantities that vary smoothly with
height between the mixed layer value and the free atmosphere value above. The
entrainment layer represents the area- or time-average thickness of a layer that is
produced by updrafts impinging on a strongly stable temperature inversion, causing the

height of the inversiorg, to vary considerably.

Observational studies in the laboratory (Willis and Deardorff, 1979) and atmosphere
(e.g., Williams and Hacker, 1993), as well as LES numerical modeling studies (e.qg.,
Schmidt and Schumann, 1989) have led to a general understanding of the turbulent
structures in the CBL, and the associated circulation patterns. Warm rising air in the
surface layer is organized into coherent structures called “plumes” with horizontal
dimensions on the order 100 m. Surface-layer plumes extend continuously through the
depth of the surface layer, and typically tilt downwind with height due to wind shear. The
plumes merge and become organized as they rise in the surface and free convection layers
to form the much larger updraft regions or “thermals” in the mixed layer. Thermals have
average horizontal spacing of approximatelyand diameters as large as M4¥oung,

1988). Mixed-layer thermals are relatively vertical due to the more uniform wind in that

layer, and extend continuously through the depth of the CBL.

Between updraft regions in the mixed layer are wider downdraft regions, covering
approximately 60% of the horizontal area in the middle of the CBL. The cores of these
downdrafts penetrate all the way through the free convection layer and surface layer.
These downdrafts suppress upward motion and force the surface flow radially outward
from their centers. Some thermals may be relatively closely spaced, with relatively

weaker downdrafts occurring between them. Convergence lines form near the surface
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between adjacent downdraft regions. Warm surface layer plumes are organized along
these lines, with air moving vertically and horizontally toward mixed layer thermals that
tend to occur above the intersections of these lines. The corresponding horizontal pattern
is often described as "spokes" leading to "hubs" below the mixed layer thermals. The
convergence lines can form irregular, interconnected polygon-shaped rings around the

downdraft regions.

Updrafts are driven by buoyancy forces, and gain momentum as they rise in the mixed
layer. When air in updrafts impinges on the stable inversion layer it can penetrate into the
overlying, warmer (higher potential temperature), free-atmosphere air before becoming
negatively buoyant and sinking back down into the mixed layer. The depth of the CBL
increases (relative to an increase or decrease due to any larger-scale mean vertical
velocity) through entrainment of free atmosphere air from above the inversion. In the
entrainment process, curtains of free atmosphere air move downward around the thermals
overshooting into the free atmosphere, and are incorporated into the mixed layer. At any
instant the stable inversion layer may be only meters thick with relatively sharp
discontinuities in temperature, moisture and wind velocity between the boundary layer air
and the free atmosphere air above. However, the height of this layer can vary over
hundreds of meters, between approximatehh @®d 1.5, on average. The boundary
layer depthh, then represents a height where, on average, approximately 50% of the air

has free atmosphere characteristics and 50% has CBL characteristics (Stull, 1988).

2.2 Scaling relationships

The important scaling parameters for average turbulent properties vary between layers in

the atmospheric boundary layer, or ABL. The turbulence scaling regions along with the
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important scaling parameters for each region of the unstable ABL were summarized by

Holtslag and Nieuwstadt (1986), and are shown in Fig. 2.2.

1.2
08 Interfacial/Entrainment Layer
- [
I
Near N I/
ear Neutra -
Upper Layer Mixed Layer
1
- — -
2 W8, U, h, 2 w6, ,h
I
I
I
0.1 <
~ - Free
Convection
Surface e\\o 2
Layer '62/ Xy Laver
T N w@,,Z
W8, uw,,Z N
N
0.01 : : ~
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-h/L

Fig. 2.2. Unstable boundary layer turbulence scaling regions and the
corresponding basic turbulence scaling parameters (after Holtslag and
Nieuwstadt, 1986).

The surface layer is the layer above the relatively thin viscous and roughness sublayers
adjacent to the surface, and below approximatelis 6c1L| (whichever is lower)The
important scaling parameters in the surface layer are the turbulent kinematic momentum
flux or Reynolds stress at the surfacéy'o; the surface kinematic turbulent heat flux,

wW'8'o; the height above the surfageand the buoyancy parametey,0, where @ is the
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potential temperatute 8 is the mean valued’ = 8 - @ is the departure from the mean,
andg is the gravitational acceleration. These basic parameters have been used in Monin-
Obukhov similarity theory (e.g., Monin and Yaglom, 1971) to determine the important
length and velocity scales for the statistical properties of meteorological variables in the
surface layer. In addition to the height above ground,second important length scale is

the Obukhov length,, (Obukhov, 1946) defined as
3
L —U'W'o‘/z
kgWo

, (2.1.1)

D

where k is von Karman’s constant. Shear production of turbulent kinetic energy
dominates foz < |L|. Buoyant production dominates for> [L|. The important velocity

scale is the friction velocity, defined hy = u_wO‘yz Monin-Obukhov similarity theory

has been used successfully to determine universal relationships for many turbulent
guantities in the surface layer, such as means, variances and covariances of temperature,
wind velocity and water vapor in steady-state horizontally-homogeneous conditions

(Garratt, 1992).

When -h/L > 10, approximately, the boundary layer is in a "convective" state, and a free
convection layer |(| < z<0.1h) exists. In this layer the buoyant production of turbulent
kinetic energy dominates and is no longer the important velocity scale. The height
above groundgz, is the appropriate length scale. The appropriate velocity scale in this

layer has been found to be the local free convection velocity scale defined by

_ G = i
w, = @W 0 oza . (2.1.2)

* Virtual potential temperature must be used if the air is not dry.
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Wyngaardet al. (1971) found vertical velocity fluctuations scale with in the free

convection layer, with
o, =134w,, (2.1.3)

12

whereg,, = (W ) is the standard deviation of the vertical velocity.

Panofsky et al. (1977) recommended the following expression which interpolates

between the neutral limit predicted by Monin-Obukhov similarity theory=13u.) and

the free convection layer relationship:

mh

[J-2
o,=13u d+35— 2.14
i &0

(note that theu, andL are not relevant scales for the free convection layer, but the fact

that w, [J LL(—Z/ L)% has been used in determining this expression).

In the mixed layer of the CBLQ(1h<z<0.8h, -h/L > 10), Deardorff (1970a, 1970b,
1972, 1974a, 1974b) showed that the important turbulence scaling parameters are

w'8'y, and % This is because the buoyant production of turbulence dominates over

shear production, and the height of the capping inversion limits the size of eddies,

becoming the important length scale. The velocity scale formed from these parameters is

w, = %W'_@'ohgls. (2.1.5)

Deardorff showed that many turbulent properties of the CBL scalehwathd w. .
Deardorff (1970b, 1972) proposed that the relevant parameter for determining the state of

the unstable boundary EL. He found that mixed layer scaling of vertical velocity and

temperature fluctuations is valid for values df/l-as low as 4.5 (this is indicated
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approximately by the vertical dashed line in Fig. 2.2). Mixed layer scaling of horizontal
velocity fluctuations becomes valid for valuew/l-between 4.5 and 45. The range of
validity of mixed layer scaling has typically been assumed to be approximhtely 10,
as indicated in Fig. 2.2. Using Egs. (2.1.1) and (2.1.5)kand.4, this corresponds to
approximatelyw, > 3u.. Deardorff and Willis (1974) estimated that this corresponds to a
typical range of validity in the CBL df) < 6w. or U < 12 m st using typical values of

u/U=0.05andw, =2 m sk

Mixed layer scaling has been used successfully to obtain universal profiles of vertical
velocity statistics. For example, Fig. 2.3a shows measurements of scaled vertical velocity

standard deviationg,,, as a function of scaled height from various experiments

summarized by Wyngaard (1988). Fig. 2.3b shows Wyngaard's summary of measured
vertical velocity skewnessS= W/(W)m, versus scaled height (the mean vertical
velocity is assumed to be zero, so=w'). Luharet al. (1996) reviewed values &
measured in field and laboratory experiments and found typical values ranged from 0.5 to
0.9, which is consistent with the data plotted in Fig. 2.3b. From Fig. 2.3, it can be seen
that for the bulk of the CBL (the mixed layer) vertical velocity statistics are relatively

homogeneous.

Mixed layer scaling of the data in Fig. 2.3 is successful even though some of it was
collected in conditions that were not horizontally homogeneous or stationary (e.g., in
conditions when the boundary layer was growing due to entrainment of air from the
overlying stable layer). As discussed by Wyngaard (1988), this success is due to time
scales for mixing over the CBL depth being smaller than the time scales for the evolution

of the boundary layer due to horizontal advection or entrainment.
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The positive skewness of the vertical velocity means that (a) the mode (highest
probability value) of the vertical velocity is negative and (b) there are higher probabilities
of large magnitude positive velocities (associated with strong updrafts) than large
magnitude negative velocities. As will be discussed below, the skewed vertical velocity

distribution significantly affects the vertical dispersion of a scalar in the CBL.

3 (b)
T T T 41T 41T 47 T T T 1' 1 ‘ I 1 1
e ¢4 mO \; Minnesota!
. i 0. \o. 1973
Convection anne & 0. . \
(Ko} o Tonk_;\ O‘O -1 \
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LNd_ ] S_ 0.9 } .
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Fig. 2.3. CBL measurements of (a) vertical velocity standard deviation,

o, = \ w?, scaled by convective velocity scake, and (b) skewness of vertical

velocity skewness versus height scaled by inversion heiglis summarized by
Wyngaard (1988).

Scaled variances of horizontal velocity components are approximately homogeneous
throughout the CBL witho,/w. =0, /w. = 0.6 (Garratt, 1992). Horizontal and vertical
velocity variances are approximately equal in the mixed layer, indicating isotropic
turbulence in this layer. However, horizontal velocity distributions in the CBL are not

skewed (Deardorff and Willis, 1985).
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Boundary layer turbulence scaling relationships have some known limitations. Deardorff
(1974b) showed that mixed layer scaling may be limited because it uses only surface
fluxes and does not include any information about processes at the top of the boundary
layer. In particular, water vapor fluctuations in the CBL are strongly affected by
entrainment processes. Panofs&y al (1977) showed that horizontal velocity
fluctuations in the unstable surface layer scale witi{as mentioned above, mixed layer
downdrafts penetrate deep into the surface layer) and not, as predicted by Monin-

Obukhov similarity theory, withu, .

2.3 Small-scale properties of turbulence

Large Reynolds number flows, such as those in the atmospheric boundary layer, contain
velocity fluctuations with a wide range of length and time scales. The Reynolds number,
Re, can be defined as the ratio of inertia force (eigdt) to viscous force per unit mass
(e.g.,vd°u/dz7%), wherev is the kinematic viscosity of the fluid. The order of magnitude

of these forces can be estimated using the characteristic velgatyd the characteristic
length scalel, of the turbulent motionsd/ can be thought of as the root-mean-square of
the velocity fluctuations and is proportionaMioin the mixed layer. The length scélis,

in general, the distance over which the velocity can undergo a change on the &der of
and is proportional td in the mixed layer. The order of magnitude of the inertia and

viscous forces are thevi*/| and vV/I?, respectively. The Reynolds number is then

Re=2
v

(Monin and Yaglom, 1971).

The largest scale turbulent fluctuations have velocity and length scales that are on the

order ofV andl. External conditions (e.g., surface heating in the CBL) produce turbulent



17
kinetic energy at these larger scales. The length scales of the larger scale turbulent
motions are often assumed to be proportional to the integral length scale in stationary,
homogeneous turbulence (Tennekes and Lumley, 1972). The Eulerian integral length
scale,lg, is the area under the spatial velocity correlation function, and can be defined as

follows:

| = Uifv ng’(O)W’(x)dx,

wherew(x) is the velocity at positior in the fluid, ando,, is the velocity standard

deviation. The integral length scale provides a measure of the spatial coherence of
turbulent motions. Time scales associated with larger scale motions can also be defined
using temporal velocity correlation functions. For example, the Lagrangian integral time

scale or correlation time,, can be defined as follows:

1%
T=—(ww|(t)dt.
o2 [P

wherew(t) is the velocity of a point moving in the fluid (a "fluid particle") at titnand

W, is the velocity at = 0.

The larger scale turbulent motions contain most of the turbulent kinetic energy. However,
for large Re the viscous force is much weaker than the inertia force associated with these
larger scale motions, and, therefore, the viscous force does not act significantly on these
larger scales of motion. As a consequence, the larger scale fluctuations are unstable and
break down into smaller and smaller scale fluctuations (Monin and Yaglom, 1975).
Turbulent kinetic energy cascades to smaller and smaller scales, with most of the
turbulent kinetic energy at a given scale coming from the next-largest scale of motion
(Tennekes and Lumley, 1972). When the velocity and length scales of the motion

becomes small enough that viscous force is comparable to the inertia force (i.e., the
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Reynolds number of the motions is of order unity), then kinetic energy is dissipated into

internal energy (heat).

So, while external conditions produce turbulent kinetic energy at the larger scales of
motion, it is dissipated at the smallest scales of motion. Under steady-state conditions,
this production and dissipation occur at the same rate. If there is an imbalance, the
turbulent kinetic energy dissipation rate quickly adjusts to match the production rate

(Tennekes and Lumley, 1972).

For large Re flows, there is hypothesized to be a "universal" equilibrium range of
turbulent velocity fluctuation frequency or wavenumber in which the statistical properties
of the smaller scale fluctuations are independent of the properties of the larger scale
fluctuations. Kolmogorov's first similarity hypothesis states that the statistical properties
of motions in this equilibrium range are determined uniquely by the mean turbulent
kinetic energy dissipation rate per unit mags and kinematic viscosityy (Monin and

Yaglom, 1975).

Using Kolmogorov’s first similarity hypothesis, the scales of motion in the small-scale
end of the equilibrium range, the dissipation range, can be estimated&faomd v by
dimensional analysis. These Kolmogorov microscales are length sca(eﬁ/g)%,
velocity scaleu, = (vf)%, and time scale,, = (v/E)%. In the convective boundary layer,
typical values forz, are less than a second, valuegjoére on the order of a millimeter,

and values o, are on the order of a hundredth of a meter per second. For example,
using typical values ofg = O.4(w;°’/h), w, =1 m st h=1000 m, andv = 1.5x 10°° ne

s, the values of the Kolmogorov microscales @e 2 mm, u, =0.009 ms™, and

T, = 0.2s.
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At the larger scale end of the equilibrium range, Kolmogorov’'s second similarity
hypothesis states that an inertial subrange exists in which viscous forces are not important
and the statistical properties of the motions are determined entiredy loythe inertial
subrange, turbulent motions have time scales much smaller than the energy-containing
scales (which can be characterized by a Lagrangian velocity correlationtfimend
much larger than the smaller energy-dissipating scales (characterized by the Kolmogorov
microscaler, ). In the inertial subrange, statistical properties of the change (in space and
time) of fluid velocity are assumed to be approximately stationary, homogeneous and

isotropic. This is called “local isotropy”.

One of the implications of the second Kolmogorov hypothesis is that the statistical
properties of the change of the Lagrangian velocity of a fluid particle, associated with
frequencies in the inertial subrange, is a function onl¥ aind the time laght. As a
consequence, the Lagrangian structure function (considering one component of velocity)

is hypothesized to be

(ow)* = C,get, (2.2.1)

where ow = w(t + dt) —w(t) is a change in the Lagrangian velocity of a fluid particle

during a time laggt, in the ranger, << 4t <<, andG, is a universal constant (Monin

and Yaglom, 1975, p. 359). Similarly, even moments of the velocity change are

(ow)" O (zat)™ (2.2.2)

(n=2,4,...). 0dd moments are hypothesized to be zero (i.e., the probability distribution
of dw is assumed to be symmetric) due to the locally isotropic turbulence in the inertial
subrange. These properties have been used in the formulation of Langevin equation

models, as will be discussed in Chapter 3.
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As stated by Monin and Yaglom (1975, pp. 584-585), Kolmogorov's similarity
hypotheses "cannot be regarded as quite exact.” This is because the statistical properties
of small scale motion may depend not only on the mean dissipatioretatet on the
probability distribution ofe. The distribution ofe depends on the fluctuations in the
velocity field which, in turn, depends on the larger scale properties of the flow. Therefore,

the statistical properties of small-scale motion may not be truly universal.

The second Kolmogorov similarity hypothesis has been used successfully to predict some
of the statistical properties of velocity fluctuations in the inertial subrange. For example,
it has been used successfully to predict the form of the turbulent kinetic energy spectral
density in the inertial subrange (e.g., Garratt, 1992). With regard to the Lagrangian
structure function, however, Pope (1994) wrote "To date, Lagrangian statistics in high-
Reynolds number flows have proven inaccessible both to experiment and to direct
numerical simulation. Consequently, a direct test of (the Lagrangian structure function

predicted by Kolmogorov's second hypothesis) has not been possible.”

2.4 Dispersion phenomena

Willis and Deardorff (1976a, 1976b, 1978 & 1981) simulated downwind advection and
vertical dispersion from continuous point sources in the CBL using a laboratory water
tank. The observed ensemble-average crosswind-integrated concen@atiom some

of these experiments are summarized in Fig. 2.4. These experimental observations have
been made dimensionless using the mixed layer scaling paranheterd w.. Free-
convection-layer and mixed-layer scaling is valid for the water tank experiments because
—L is effectively very small (and, correspondingly/L; is very large) since there is no
mean flow in the water tank. The concentration is made dimensionless through scaling by

the concentration value corresponding to a uniform distribution in the ve@gddh,
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whereQ is the continuous point source emission rate,lamthe mean horizontal wind

speed.
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Fig. 2.4. Smoothed contours of dimensionless cross-wind-integrated
concentrationCU/Q, versus dimensionless heiglizz/h , and downwind
distance,X = xw./Uh, from Willis & Deardorff (1976b, 1978) laboratory

experiments for dimensionless source heights ofz(#) = 0.067 (top figure),
(b) z,/h = 0.24 (bottom), where& is downwind distancey. is the convective

velocity scalel is the mean horizontal wind speed at the source heighty asd
the mean inversion height. Arrows indicate source location.

Most of Willis and Deardorff's experiments used instantaneous line sources (ILS), but
some used continuous point sources (CPS). Since there was no mean horizontal flow in

the water tank. CPS experiments were conducted by moving the source horizontally, to
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simulate a uniform horizontal wind. Concentrations measured from ILS experiments
(with the line source oriented in thedirection) were transformed to simulated CPS
concentrations (with a mean wind in tkedirection). This was done by assuming
downwind dispersion relative to the mean horizontal wihassumed to be constant
with height) is negligible. Using these assumptions, dimensionless time in the
experimentst/t., wheret. =h/w. is the convective time scale, is transformed into a
dimensionless downwind distancé= XW%h' This makes use of Taylor's hypothesis
that the eddies are advected past a fixed point faster than the time for them to
significantly change their characteristics. Willis and Deardorff (1976b) showed that these
assumptions were reasonable for=2.8w. by comparing their ILS and CPS
observations. They also estimated that these assumptions are validliPw, or

U >20,, where g, is the standard deviation of the downwind component of the wind

velocity.

The first Willis and Deardorff experiments were for near-surface sources. Fig. 2.4a shows
that the height of the locus or "line" of the maximum ensemble-average cross-wind-
integrated concentration of tracer from a near-surface source stays near the surface
initially and then quickly begins to increase with downwind distance startingXhear

0.5. Lamb (1978a, 1978b, 1982) studied CBL dispersion using a Lagrangian numerical
model, and velocity fields from Deardorff's (1974a) 3-D LES simulations. Lamb's results

for near-surface source were similar to Willis and Deardorff's observations.

Lamb also simulated elevated sources and found that the downwind dispersion was
significantly different from that from a near-surface source. Lamb's simulations inspired
Willis and Deardorff (1978, 1981) to perform the water tank experiments with elevated
sources ar, = 0.24 (observations shown in Fig. 2.4b) as welkas 0.4%h. The Lamb

simulations and the Willis and Deardorff experiments for elevated sources showed
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similar results. Fig. 2.4b shows that, for an elevated source, the height of the maximum
concentration line initially decreases with downwind distance in the Willis and Deardorff
experiments. After encountering the surface near 0.5, the maximum concentration

line stays near the surface until it begins to ascendxhedd.8.

Lamb’s and Willis & Deardorff's studies showed that the positive skewness of the vertical
velocity distribution, and the long Lagrangian correlation time of the vertical velocity are
key to explaining CBL vertical dispersion phenomena. As discussed by Lamb (1982),
neutrally buoyant material emitted from an elevated source has a higher probability of
encountering a downdraft because of the positively skewed vertical velocity distribution.
Lamb (1978a) found that in the middle of the mixed layer the fraction of the horizontal
area covered by downdrafts was approximately 60%, with the remaining 40% covered by
stronger updrafts. Due to the long-lived, deep convection found in the CBL, material
emitted into a downdraft will typically be carried to the surface. Because downdrafts
predominate, the most likely event is for emitted material to move relatively slowly
toward the surface in downdrafts, and then horizontally into convergence zones of
updrafts. Material directly emitted from an elevated source into the strong updrafts is
quickly recycled into downdrafts. The combined effect is that the height of the maximum
concentration line descends with downwind distance for elevated sources, as shown in

Fig. 2.4b.

Material emitted by a near-surface source is either directly incorporated into an updraft
or, if it is emitted in a downdraft area, moves horizontally near the surface until it is
incorporated in an updraft. Material initially released into an updraft from a surface
source doesn't recirculate down near the surface before material released in downdraft
areas is swept into updrafts. Because downdrafts cover a majority of the horizontal area,

the maximum concentration line initially stays near the surface, but then quickly begins
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to ascend, as shown in Fig. 2.4a, when the most likely event is that material is

incorporated into updrafts.

Note that at some downwind distances, the near-surface concentration of material emitted
from the elevated source (Fig. 2.4b) is greater than from the near-surface source (Fig.
2.4a). Also note that for both source heights the near-surface concentration decreases to a
minimum before increasing toward the well-mixed, steady-state concentration value

(CUh/Q= 1) at the furthest downwind distances.

The ability to simulate these phenomena is critical to accurate calculation of tracer
concentrations in the CBL. For example, for an elevated source, significant
underprediction of ground-level pollutant concentrations can occur in dispersion models
if these processes are not taken into account. These underpredictions can be as high as a

factor of 2.9 (Briggs, 1993a).

The dispersion phenomena found in these Willis and Deardorff's laboratory experiments
and Lamb's numerical experiments have been observed in the atmosphere during a CBL
dispersion field study (Kaimadt al, 1986; Briggs, 1993a, 1993b). Briggs (1993b)
showed that the field experiment observations were in good agreement with the Willis

and Deardorff laboratory observations, as well as Lamb’s numerical modeling results.

In the numerical modeling work presented in the next chapters, we shall make use of
Willis and Deardorff's simplified conceptual model of dispersion from a continuous point
source in the CBL. This conceptual model assumes that (1) mixed-layer scaling is valid,
(2) there is a uniform horizontal mean wind velocity, and (3) there are velocity

fluctuations only in the vertical velocity component,
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When using these simplifying approximations, the correlation of the vertical and
horizontal velocity fluctuations, e.qu/w', is neglectedu’'w’ is non-zero and negative in
the CBL (due to the downward turbulent flux of momentum), with a maximum
magnitude at the surface (e.g., Stull, 1988). However, as discussed above, the momentum

flux is not an important turbulence scaling parameter in the bulk of the €BILL().

The good agreement between the results of Lamb's simulations (using 3-D LES velocity
fields) and Willis and Deardorff's experiments, indicate that the simplifying assumptions
used by Willis and Deardorff (that horizontal velocity fluctuations could be neglected and
the mean horizontal wind is uniform) are reasonable. The mean wind speed range for
which horizontal velocity fluctuations can be neglectdd; L2w. (estimated using the

criteria U > 20, by Willis and Deardorff, 1976b), appears to be reasonable because the

mean wind speed of the LES data used by Lamb was close to the lower end of this range,

U=14w,.

The range of validity of these assumptions is quite large, and is approximately
12w, <U <6w,,

or

2.4<U <12 m st

for a typical value ofw, = 2 m st The upper limit is imposed by the range of validity of
mixed layer scaling (/L > 10). The lower limit is imposed by the assumption that

horizontal velocity fluctuations are negligible compared to mean wind advection
(U>20,).
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Because mixed-layer scaling is not valid fox 0.1h, the use of mixed layer scaling will

not be valid for source heightg,, below 0.1 until the vertical spread of material has

reached a depth greater thantD.Nieuwstadt (1980) used observations from the Prairie

Grass field experiment (continuous point source at roughty0.000%) and the criteria
o,/h > 0.1 (whereg, is the vertical standard deviation of the concentration distribution)
to estimate that mixed layer scaling of vertical dispersion is valid for dimensionless

downwind distanc& > 0.23 for a ground-level point source.
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3

Langevin Equation Models

In this chapter, Lagrangian stochastic modeling of turbulent dispersion based on the
Langevin equation is reviewed, and two Langevin-equation-based models for convective
boundary layer dispersion are presented along with “reflection” boundary conditions at
the top and bottom of the boundary layer. Pioneering work in the stochastic approach to
diffusion was done in the early 1900s by Einstein, Smoluchowski, and Langevin in work
on diffusion due to Brownian motion (Gardiner, 1990). Langevin introduced the
Lagrangian stochastic approach, with drag and random forces acting on a particle. Taylor
(1921) first proposed a Lagrangian statistical approach to turbulent dispersion. Obukhov
(1959) proposed that the Lagrangian evolution of fluid particle velocity and position
could be described by the Fokker-Planck equation for the probability distribution function
of velocity and position. More recently, beginning in the 1970s, considerable progress has
been made in the theory and application of Lagrangian stochastic models of fluid particle
trajectories in turbulent flows. Reviews of this subject have been written by Durbin
(1983), Sawford (1985 & 1993), Thomson (1987), Pope (1987 & 1994), Wilson and
Sawford (1996), and Rodean (1996).

The basis of the Lagrangian stochastic approach to turbulent dispersion is reviewed in
Section 3.1. The Langevin equation of motion for a fluid particle is presented in Section
3.2. Two forms of the Langevin equation are presented. Sections 3.3 presents the Fokker-
Planck equation and Kramers-Moyal expansion, which describe the particle velocity

probability distribution. These two equations describe the same stochastic processes as
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the two forms of the Langevin equation. Section 3.4 presents the development of two
Langevin equation models (one used by previous investigators and one new model) for
the time evolution of particle velocity assuming homogeneous, skewed fluid velocity
distribution. Using some of the properties of these Langevin equation models, Section 3.5
discusses the assumptions inherent in the Langevin equation approach and their
justification. Section 3.6 presents the development of methods for integrating the two
forms of the Langevin equation to develop an equation for numerically simulating the
time evolution of particle velocity. The simulation of particle position is discussed in
Section 3.7. The development of methods for selecting new velocities for particles that

encounter a boundary (reflection boundary conditions) are discussed in Section 3.8.

3.1 Lagrangian stochastic approach

Lagrangian stochastic models of turbulent dispersion can be used to describe the possible
trajectories of fluid particles. A fluid particle represents a small, idealized volume of fluid
with spatial dimensions much larger than the average distance between molecules.
However, these spatial dimensions are sufficiently small, compared to distances that the
fluid properties vary significantly, that the properties in this small volume can be
assumed to be uniform. The spatial dimensions of a fluid particle are also small enough
that, for the times under consideration, it does not undergo significant deformation, and it
can be effectively treated as a “point” moving in the fluid. The effects of molecular
diffusion are neglected because they are small compared to the effects of turbulent

dispersion in the high Reynolds number flows found in atmospheric boundary layers.

Stochastic models can be used to determine the probability distribution of future particle
positions, given initial positions. These probability distributions can be use to calculate

ensemble-mean concentration of material at a desired time, given the concentration
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distribution at earlier times. Ensemble-mean air concentra@nt) , (mass per unit

volume) at positionr and timet can be determined as follows:

C(r,t)= _t[dtOJ’dqu(ro,to)P(r,t s Fodo), (3.1.1)

where q(r,,t,) represents the source distribution term at positiprat timet, (trace

material mass emitted per unit time per unit volume), Bfrdt ; r,,t,) is the probability

density function for the particle positianat timet given it was at positiom, at timet,
(Tennekes and Lumley, 1972). Considering the ensemble of particle trajectories that
originate at positiorr, at timet,, P(r,t ; r,,t,) can be thought of as the fraction of
particles per unit volume that are @atat later timet. If the source distribution term is
constant with time and the turbulent flow is stationary (i.e., the statistical properties do
not change with time), the ensemble-average concentration can be used as an estimate of
the time-average concentration through the ergodic hypothesis (Lumley and Panofsky,

1964).

We will make use of Langevin-equation-based Lagrangian stochastic models that can be
used to describd>(r,t ; r,,t,) through the ensemble of possible particle trajectories,
{ri(t), 1=12,.. } . An individual particle trajectoryr; (t), is an independent realization

from this ensemble. A Langevin equation model can be used in Monte Carlo simulations
to calculate a large sample of particle trajectories, from which the distribution

P(r,t ; ryt,), its moments, and, using Eqg. (3.1.1), the mean concenti@iot) can be

estimated.
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3.2 Langevin equation

The Langevin equation is a stochastic differential equation that can be used to describe
the Lagrangian acceleration of a fluid particle. The generalized Langevin equation can be

written as follows:

(:i—\ivza(w)+/\(t), (3.2.1)
wherew is the velocity of a fluid particle, artdis time (van Kampen, 1992). (We are
studying the case of vertical dispersion, and will restrict our attention to one component
of the acceleration.) Eq. (3.2.1) assumes that the net acceleration of a particle is the sum
of a deterministic acceleratiom(w), which is a function otv, and a rapidly fluctuating
random acceleration/\(t), which is not a function otv. A(t) is assumed to be
uncorrelated over any time period of interest. It is modeled as delta-function correlated in

time, with statistical properties defined by the following autocorrelation functions:

(NIAGAGIL AGL,)) =T 8t —1,)8( ~ )L a(t, —t,), (3.2.2)

wheren=1, 2, .. ., and the notatig )) denotes the cumulahof a quantity. The set of
coefficients {,, n =1, 2, ...} are to be determined from the statistical properties of the

fluid velocity.

The correlation functions defined by Eq. (3.2.2) in cumulant notation can be written in
terms of ensemble average quantities. The first three cumulants are the same as the first

three central moments, but this is not true of higher cumulants. If the random acceleration

# Thenth cumulant of a random variable is a function of the moments of arded lower (Gardiner,
1990). For example, ((x)) =X, <<X2>>=P—)_(2, <<X3>>=?—3P)_(+>_(3,
<<X4>> =x* —4xx® - 3x? +12%?x? - 6X". For a Gaussian distribution, the cumulantsrfer3, 4,

... are zero. So, the higher order cumulants @, 4, ...) are a measure of the departure of a probability
distribution from a Gaussian distribution.
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has zero mean/A(t) =0, the first- through fourth-order correlation functions, for

example, defined by (3.2.2) may be written as follows:

{(AM)=A@M =0,

(AWAL))) = AR,

(AMALAL))) = AM)AL)A,), and

{(AMAI)AM)AR,))) = AT A A)A,)
—3AAR,)"

where the notatioff ) denotes the ensemble-average value of a quantity.

We will make use of two forms of the Langevin equation in which the random

acceleration\(t), has one of the following two properties:

(1) Gaussian A(t) is a Gaussian process, which me&@{ (t,), A(t,).K A(t,)) is a

multivariate Gaussian distribution completely defined by the means,
AL), 1=12Kn, and autocovariancesA(t)A(t;), i=L2Kn, j=12K n.
Correspondingly, the third and higher ordes(3, 4, . . .) cumulant autocorrelation

functions given by Eq. (3.2.2) are zero.

(2) Skewed A(t) is a non-Gaussian, skewed process, which means the cumulant

autocorrelation functions defined by Eqg. (3.2.2) are non-zero for @l=1, 2, ...).

The velocity equation

dz
—“=w, 3.2.3
o ( )
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wherezis the particle position, along with Eqgs. (3.2.1-2) define a stochastic process for
the joint evolution ofw andz of a fluid particle. In order to calculate the, () phase
space trajectory of a particle, we need to obtain an equation for the time evolution of
particle velocity w(t), by integrating the Langevin equation (3.2.1), and, then, integrate

the velocity equation (3.2.3) to calculate the time evolution of the particle pogtjon,

3.3 Kramers-Moyal expansion and Fokker-Planck equation

In developing Langevin equation models, it is often very helpful to make use of the
equations describing the time evolution of the joint probability density function of
particle velocity and positionP(w,zt ; w,,z,t,). These are the Kramers-Moyal
expansion and the Fokker-Planck equation, which describe the same stochastic processes
as the Langevin equations with skewed and Gaussian random accelerations, respectively.

The Kramers-Moyal expansiomay be written as follows (van Kampen, 1992):

oP_ 0 > ()" 9"
E__E(prnzl - W(an). (3.3.1)

where

P=PW,zt; W, Z,t,)

is the joint probability distribution function of velocity and positiorz after time interval

ot =t -t,, given velocityw, and positiornz, at the beginning of the time interval. Eq.
(3.3.1) withb, = 0 forn = 3, 4, . . . is thé&okker-Planck equatignwvhich describes the

same process as the Langevin equation with a Gaussian random acceleration.

The coefficientd,, n =1, 2, . . ., in the Kramers-Moyal expansion (or Fokker-Planck

equation fom =1, 2) are defined as follows:
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] B CLU Y (3.3.2)
ot
where 3t =t -t,, dw=w-w,, and (éw)", n =1, 2, . . ., are the velocity increment

moments. The Langevin equation coefficiegsand Kramers-Moyal coefficients, are
directly related. This can be shown by calculating the small time increment moments of
the velocity increment, obtained by integrating the Langevin equation (this will be done
later in this chapter). The result, for our case of homogenous statistical properties of the

fluid velocity with zero mean, is, for=1,
b, = a(w), (3.3.3)
and forn=2, 3, .. .,

b =r,. (3.3.4)

The Kramers-Moyal expansion (equivalent to the Langevin equation with a skewed

random acceleration) may then be written as follows:

P —ﬁ(wP) —i(a(w)P) + iﬂ s (r,P).

— (3.3.5)
ot 0z ow S onloow”

Similarly, the Fokker-Planck equation (equivalent to the Langevin equation with a

Gaussian random acceleration) may then be written as follows:

oP d J 1 92
== P)-— P)+ =

(re), (3.3.6)

2

wherel =T,.
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3.4 Langevin equation models for skewed turbulence

In this section, we will explore two forms of the Langevin equation for turbulent flows

with skewed velocity statistics:

(1) thenonlinear-Gaussiahangevin equation with a deterministic terafw), that is

anonlinearfunction ofw, and aGaussiarrandom termA(t); and

(2) thelinear-skewed_angevin equation with a deterministic tera(w), that is a

simplelinear function ofw and askewedandom termA(t).

Given the form of the Langevin equation, assumptions and constraints must then be used

to determinea(w) and the random acceleration coefficient(s), in terms of known
statistical properties of the fluid velocity. In particular, the first three moments of the fluid
velocity (w;, va andvT?, with w, assumed to be zero) will be used, because they have
been shown to be key to CBL dispersion processes, as discussed in Chapter 2. Before
describing the development of Langevin equation models for the time evolution of

particle velocity in turbulence with a skewed velocity distribution (i.e., non-zero

— /—\3
skewnessS=w’ / (wf)/2 ), previous work on these types of models will be reviewed.

3.4.1 Previous studies

The development of Langevin equation dispersion models for skewed turbulence began
in the 1980s, sparked by interest in modeling vertical dispersion in the skewed turbulence
of the convective boundary layer. Models based on both linear-skewed and nonlinear-

Gaussian Langevin equations have been used.
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Thomson (1987) demonstrated that the most rigorous constraint, to date, that must be met
by a Langevin equation model is thvell-mixed conditionThis condition states that trace
material initially well-mixed in a fluid must remain so, and, therefore, the joint

probability distribution of position and velocity of tracer particl®w,z) will remain

the same as that of the flui®, (w, z). Correspondingly, the fluid particles and the tracer
will have the same velocity momems?? =w", position momentsz_;“ =Z7", and joint

momentsw;z;' =w"z", form =1,2,...and =1,2,....

Nonlinear-Gaussia.angevin equation models (e.g., Luhar & Britter, 1989; Weil, 1989

& 1990; Duet al, 1994; Rotaclet al, 1996; Luhaet al, 1996) have been successfully
developed and applied to the problem of vertical dispersion in the CBL assuming that the
vertical velocity distribution is skewed and varies with height (although, the variation of
these properties with height in the surface or free convection layers was not resolved in
these studies). Hurley and Physick (1993) used a nonlinear-Gaussian Langevin equation
model with the simplifying approximation that the skewed vertical velocity distribution is
homogeneous in the vertical. They showed fair results compared to laboratory

experiments on vertical dispersion in the CBL.

All these nonlinear-Gaussian Langevin models have been developed using an approach
introduced by Thomson (1987). In Thomson’s approach, the coeffidienh the
Gaussian random acceleration is chosen so the resulting Lagrangian structure function is
consistent with the second Kolmogorov similarity hypothesis (discussed in Chapter 2).
The deterministic terma(w), is then determined from the Fokker-Planck equation using

an assumed form for the fluid velocity probability distribution, and applying the well-

mixed condition.
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The development dinear-skewed.angevin equation models (Thomson, 1984; van Dop
et al, 1985; de Baast al.,, 1986; Sawford, 1986; Sawford and Guest, 1987) has been less
successful in meeting the well-mixed constraint for skewed and inhomogeneous
turbulence. As discussed by Thomson (1984, 1987), Sawford (1986) and Sawford and
Guest (1987), there appear to have been several problems with the formulation and
application of these models in bounded flows with strongly inhomogeneous
parameterizations of the fluid velocity statistics. In addition, they discuss a fundamental
difficulty in applying this type of model: all the cumulants of the random acceleration are
non-zero (as noted above), but when higher order cumulants are important it is difficult to
generate such a random variable. For inhomogeneous turbulence, it appears this
difficulty has not been overcome. However, for the simplified caskoafogeneous
skewed turbulence it will be shown below that a linear-skewed Langevin equation model

can be successfully developed, and that it satisfies the well-mixed condition.

3.4.2 Assumptions

In this work, it will be assumed that the ambient turbulence is homogenous and
stationary; i.e., the statistical properties of the fluid veloaity,are not a function of
time, t, or position,z. It will also be assumed that the mean fluid velocity is zefos 0.
These assumptions imply that

(a) the deterministic acceleratioa(w), depends only ow and notzort,

(b) the random acceleration coefficienfs,f are also not functions afort, and

(c) the random acceleratiak(t) has a zero mean.

The assumption of homogeneous turbulence allows significantly longer time steps to be
used. Time steps must be kept small relative to the Lagrangian velocity correlation time,

T, in typical numerical methods. However, if the turbulence is inhomogeneous with a
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Lagrangian time scale that approaches zero at a boundary (as in parameterizations of
surface layer turbulence), very small time steps are required. In addition, inhomogeneity
in the fluid vertical velocity moments also limits the time step in typical numerical
simulations (Thomson, 1987; Wilson and Flesch, 1993). In Langevin equation numerical
simulations of CBL dispersion assuming inhomogeneous turbulence, time steps on the
order of At = 0.01r are required for accurate solutions (Luhar and Britter, 1989; Wilson
and Flesch, 1993). Hurley and Physick (1993) used a significantly longer time gep of
= 0.3r in their homogenous turbulence simulations. Some numerical error results when
using At = 0.3r with typical numerical methods in homogeneous nonlinear-Gaussian
Langevin equation models (as noted by Hurley and Physick and shown in the next
chapter), but time steps substantially larger thar= 0.01r may be used with negligible

error.

Using the homogeneous turbulence assumption, Hurley and Physick (1993) developed a
CBL dispersion model based on timenlinear-GaussianLangevin equation. This
approach will be presented in the next section, Section 3.4.3. In Section 3.4.4, the
development of an alternative model using lthear-skewed_angevin equation and the

homogeneous turbulence assumption will be presented.

3.4.3 Nonlinear-Gaussian Langevin eguation model

As mentioned above, we must integrate the Langevin equation (3.2.1) to obtain an
equation for the time evolution of particle velocity. For the case of a nonlinear
deterministic acceleratiora(w), it may not be possible to explicitly integrate Eq. (3.2.1).
An approximate velocity equation can be developed as follows. Integrating Eq. (3.2.1)

results in the following expression for the velocity change:
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At At

Aw = w(At) —w(0) = Ia(w)dt + J’/\ (t)dt,

where A(t) is Gaussian for this case. Using a Taylor series expansia(#graboutt =

0,

a(w(t)) = a(w, ) +

wherew, = w(0), the change in velocity becomes

At

Aw = a(w,)At + O(At?) + J’/\ (t)dt.

For At <<1, the approximate velocity equation is

Aw Oa(w,)At +rg(At), (3.4.1)

where

At

ro(At) = J'/\(t)dt.

Since A(t) is Gaussian for this form of the Langevin equation, the statistical properties

of r;(At) are determined by its first two moments. Sintg) = 0, the mean is zero,

re(At) =0. (3.4.2)
The second moment is
ljt At At At At
r2(At) = ofA@)dtg = [ [AGA)dt'dt = [ (7ot —t")dt'dt
L0 =gAnag=[{ I (343)

=TAt
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For At <<1, the Lagrangian structure function, defined(Aw)z, corresponding to this

Langevin velocity equation is

(W)’ ., =[a(wp)At + rg(AD)]° (3.4.4)

=rg(At)

(note that terms of ordesit® and higher vanish, that, (At)and a(w) are independent so

a(w,)rg (At) = a(w,) rg(At), and thatr;(At) = 0). Using Egs. (3.4.3) and (3.4.4),

(Aw)? .., =TAt. (3.4.5)

At<<l

The coefficient/” can be specified for large Reynolds number flows using the
Lagrangian structure function predicted by the second Kolmogorov similarity hypothesis,

which, as described in Chapter 2, is

(Aw)® = C At (3.4.6)

for At << 1. The Langevin equation’s Lagrangian structure function given in Eq. (3.4.5)

is consistent with Eq. (3.4.6) if

I =Ck. (3.4.7)

With the random acceleration coefficierft, specified, it only remains to determine the
deterministic acceleratiom(w). It can be determined using the Fokker-Planck equation.
Using the assumptions that the statistical propertiew afe independent of, the
Fokker-Planck equation for velocity alone can be obtained by integrating the Fokker-

Planck equation foP(w,z), Eq. (3.3.6), over = —o to oo, resulting in:

opw) __ 9 1
o - AWPW)+ 2

(FP(w)). (3.4.8)

2
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(In performing this integration, the assumption is made that as—«, P(w) - O faster
than |a(w)| increases.) Assuming stationary conditions, so that the left side of this
equation is zero, and integrating in velocity freme to w the following expression for

a(w) is obtained:

awy = L OPw)

=P ow (3.4.9)

The well-mixed constraint ensures the(tw) = P, (w) is a solution to the Fokker Planck

equation. Therefore, given an expression R(w), Eq. (3.4.9) may then be used to

obtain an expression foa(w) that satisfies the well-mixed constraint. Since many

skewed forms foiP, (w) can potentially be used, this approach does not lead to a unique

a(w).

Typically, nonlinear-Gaussian Langevin equation models for the CBL have been

developed (e.g., Luhar & Britter, 1989; Weil, 1989 & 1990) using a bi-Gaussian

distribution for P, (w) introduced by Baerentsen and Berkowicz (1984). This distribution

is a linear combination of two Gaussian distributions, and can be written as follows:

P, (w) = AP, (W) +A,P,(w) (3.4.10)
where
1 (w-w)"C
P, (w) = ex
)= om0, ®PE 207 E
: ; (3.4.11, 12)
1 w-w,) U
P,(w) = exp+ 2/ N
2(W) V2o, p@ 20,° &
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The six parameters of this distributiow,, w,, g,, g,, A,, and A, will be specified

using the first three moments of the fluid velocity, €0, w?, and w?), which are

assumed to be known. These six parameters can be determined from four equations for
moments zero through three of this distribution, and two closure assumptionsr,

andw, = —g, (see Appendix A). The result is

—  [—=2  —s3
WP =W +8wp

W, =-0, = v , (3.4.13)
f

R A

W,=0,=—-= — , (3.4.14)
2w, 4w,
A= W‘_\%, and (3.4.15)
1 2
M:W%W' (3.4.16)
1 2

The parameters of the bi-Gaussian distribution are now defined.

Using Eq. (3.4.9)a(w) may be determined using the bi-Gaussian distribution (3.4.10-12)

and the well-mixed conditiorR?(w) = P, (w). The result is

- DAlF)l(W) (w—v71)+ A2P2(W)

M) = om0 o2

(w—vTZ)B (3.4.17)
0

This deterministic acceleration is a complex, non-linear function of velocity, and is not
unique, since it depends on the chosen form of the velocity distribution (in this case a bi-

Gaussian distribution).
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In summary, given the fluid velocity momen@ and V\_/f and the dissipation raté,

(or, as we shall see below, a Lagrangian correlation time scale of the velocity), this

nonlinear-Gaussian model is completely defined by the first-atl@ccurate velocity

equation,
Aw Oa(w,)At +r(At), (3.4.1)

the statistical properties of,(At) given by Egs. (3.4.2-3) and (3.4.7), aal@v) given by

Egs. (3.4.10-17).

3.4.4 Linear-skewed Langevin equation model

For the linear-skewed Langevin equation, the deterministic acceleration in (3.2.1) is

assumed to be a linear function of velocity,
a(w) = -aw. (3.4.18)

Consistent with our assumption of homogeneous and stationary velocity statistiosl,
the set of the random acceleration coefficierfiig H = 1, 2,. . . } in (3.2.2) are constant
(not a function ofz or t). In this case, the Langevin equation (3.2.1) may be integrated

explicitly, and has the solution

w(t) = w(0)e ™ +je"(s“)/\(s)ds, (3.4.19)
1442 4 43
=r,(t)

where A(t) is a non-Gaussian, skewed process for this form of the Langevin equation.
The statistical properties of(t) andr(t), and the coefficientg and {{,, n=1, 2, 3,...}
can be determined from an analysis of the velocity moments and autocorrelation function

using the Langevin equation solution (3.4.19) with the assumptions above. Using the
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Langevin equation, thath moment ofw andr, can be determined by taking the
ensemble-average value of tiitb power of the Langevin equation solution ¥e(t), EqQ.

(3.4.19), and carrying out the necessary time integration (see Appendix B).

The resulting general equation for the time-dependent velocity moments, using cumulant

notatiori, is
((wr (1)) = ((wp))e™ +((r2(v))), (3.4.20)

wheren =1, 2,. . ., andv, = w(0). The resulting general expression for the time-

dependent moments nf using cumulant notation, is

((r20)) = Ty (1-em). (3.4.21)

na

Alternately, the moments and cumulantswg(t) can also be determined from the
Kramers-Moyal expansion fd?(w) instead of using the Langevin equation. Tith
moment ofw can be determined by multiplying this Kramers-Moyal expansiontgnd
integrating ovem from —oo to o and assuming (i) thie, are not functions ofv, and (ii)

P\ approaches zero faster thampproachesoe or —o.

Now, from the well-mixed condition we know that an initially well-mixed tracer will
have the same velocity distribution, and, correspondingly, the same cumulants and
moments as the fluid at all times under stationary conditions. Therefore, under these

conditions the well-mixed condition requires that

((w()) = ((wg)) = ((wr)). (3.4.22)

* The additivity property shown by Egs. (3.4.19-20) is the main advantage which cumulants have over
moments: i.e., theth cumulant of the sum of independent variables is equal to the sum oththe
cumulants of the individual variables (Kalbfleisch, 1985).
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From Eq. (3.4.20), it can be seen that the cumulantgtpthat meet this constraint are

(r)) = <<w?>>(1- e™™). (3.4.23)

From Egs. (3.4.21) and (3.4.23) it can be seen that

((wh)) = rc; , (3.4.24)
or
ro=na((w"),n=1,2,.... (3.4.25)

For example, I,=aw, =0, [I,=2aw’, I, :Sava‘, r, :4a(v7f4—3Wf22),
re= 50(v7§—10v7f2v\_/f‘), and I, = 6a(v7f6—15v7f2v7{‘—10v7f32 +30v7f23). So, the random

acceleration cumulant coefficienfg and the random velocity incremeangt) are now

defined in terms of an infinite number of the fluid velocity cumulants (or moments).

The interpretation of the coefficientin the deterministic acceleration can be seen from
the velocity autocorrelation function. Multiplying the velocity equation (3.4.19vpy

and taking the ensemble average results in
WoW(t) = wie ™. (3.4.26)

It can then be seen that the coefficienis the inverse of the Lagrangian integral time

scale or Lagrangian correlation tinte,

a==, (3.4.27)

whererT is defined as follows:
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(3.4.28)

The linear-skewed model is now completely defined. Both the deterministic &rarid
the set of the random acceleration cumulant coefficieiis{= 1, 2,. . . } are defined in
terms of obtainable (in principle) information, namely, the statistical properties of the

fluid velocity: the Lagrangian correlation time and the fluid velocity moments.

One of the desirable aspects of this linear-skewed model is that exact expressions for the

time-dependent position momentg}(t), for the joint velocity-position moments,

w"(t)z"(t), and for the autocorrelation functiomgw"(t) may be determined as well as

for the velocity momentsw"(t), given by the cumulants in Eq. (3.4.20) (under the
assumptions, stated above, that the turbulence is homogeneous and stationary, and in the
absence of boundaries). Some of these exact, analytic expressions are given in Appendix
B. In Chapter 4, we will use these to test numerical simulations using the linear-skewed

Langevin model.

In summary, this linear-skewed Langevin equation model assumes that the deterministic
acceleration is a simple, linear function of velocity, and that the random acceleration is
skewed. For homogeneous turbulence, this Langevin equation may be integrated

explicitly to determine an exact equation for the time-evolution of particle velocity,
w(t) =w,e™" +r (1), (3.4.29)

whereT is the Lagrangian correlation time of the velocity, af(t) is a skewed random

variable with an infinite number of non-zero cumulants. Using the well-mixed condition,
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the statistical properties af(t) are uniquely defined in terms of an infinite number of

fluid velocity cumulants by Eq. (3.4.23).

3.4.5 Special case: Gaussian (unskewed) turbulence

For the special case in which the fluid velocity distributi®(w), is Gaussian, and,

correspondingly,<<w?>> =0 for n=3, 4, 5 K (e.g., skewness equals zerbpth the

linear-skewed Langevin equation and the nonlinear-Gaussian Langevin equation collapse
to the Langevin equation with a linear deterministic acceleration and a Gaussian random
acceleration. This is the classic form of this equation used by Langevin. We shall call it
the linear-GaussianLangevin equation. It is also known as the Ornstein-Uhlenbeck
process (Gardiner, 1990). In this case, the Langevin equation (3.2.1) may be integrated
explicitly (as in the case of the linear-skewed Langevin equation). The velocity equation
is

w(t) = w(0)e™'" +r (1), (3.4.30)

wherer (t) is Gaussian with first two moments defined as follows:

ry(t)=0, (3.4.31)

120 = wi(1-e "), (3.4.32)

A relationship between the Lagrangian correlation time scal¢he fluid velocity
variance,va, and the turbulent kinetic energy dissipation rate (per unit massgan be
obtained using the Lagrangian structure function for this Langevin equation and
Kolmogorov’s second similarity hypothesis (discussed in Chapter 2). The Langevin-

equation Lagrangian structure function for small time increndgnis
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2w?

T

(ow)* ==L at, (3.4.33)

where ow = w(t + dt) —w(t). Consistency with the prediction of Kolmogorov’s second

similarity hypothesis foet in the inertial subranggjven in Eq. (2.2.1)(5W)2 =Géat,

implies that

N
ey

CO

]
I

(3.4.34)

This equation shows a relationship betweenrth?f, and &, for Gaussian turbulence. It
indicates that the Lagrangian velocity correlation timeassociated with the larger scale

motions, can, in general, also be thought of as a dissipation time scale for turbulent

kinetic energy associated with the larger, energy-containing scales of motion.

3.4.6 Deterministic acceleratiosw), for the two Langevin equations

The deterministic acceleratioa(w), for the two forms of the Langevin equation —

defined using Egs. (3.4.17) and (3.4.34), for the nonlinear-Gaussian Langevin equation,
and using Eqgs. (3.4.18) and (3.4.27), for the linear-skewed Langevin equation — can now
be compared. The dimensionless deterministic acceleration for both models are plotted in

Fig. 3.1 for fluid velocity skewness= 0.8.

For the linear-skewed moded(w) always acts to slow the speed of the particle. In
contrast, the nonlineaa(w) will accelerate particles with velocities in the range
-0.50,, <w <0 in the example shown in Fig. 3.1, wherg is the standard deviation of
the fluid velocity. Also in contrast to the lineaw), the magnitude of the nonlineafw)

does not increase monotonically with the magnitude oitHe particular, it can be seen
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from Fig. 3.1 that for a range of values near 0.50,, particles with larger magnitude

velocities have a smaller magnitude deceleration.

-6 -4 -2 0 2 4 6
w
Fig. 3.1. Dimensionless deterministic acceleratidfW) = a(w)t/o,,,

versus dimensionless velocy = w/ g,, for linear-skewed Langevin

equation (dashed line) and nonlinear-Gaussian Langevin equation
(solid line) for fluid velocity skewnes§= 0.8.

3.5 Assumptions and justification of Langevin equation approach

The justification for the use of the Langevin equation rests solely on its ability to model
the statistical properties, observed and hypothesized, of the fluid velocity. Use of the
Langevin equation assumes that the time evolution of particle velocity can be modeled by
a stochastic process with weakly correlated acceleration, and in which the velocity is a
non-differentiable and (in one form of the Langevin equation) a discontinuous function of
time, t. This section discusses these assumptions, their implications, and their

justification.
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The Langevin equation assumes that the particle mean acceleration depends only on its
current velocity, and that the random acceleration is uncorrelated over any time period of
interest. This assumption that the future particle velocity depends simply on the current
velocity, and not the past history of the velocity is called the Markov assumption. These
assumptions are justified if the particle acceleration is weakly correlated in time. In large

Reynolds number flows, the acceleration is strongly correlated for times on the order of

and smaller than the Kolmogorov microscatg,(Monin and Yaglom, 1975, p. 370). As
discussed in Chapter Z, is typically much less than a second in the atmospheric

boundary layer. For atmospheric dispersion problems, only times much greater, than

are typically of interest, and the Markov assumption is justified.

The statistical properties of the change in velocity predicted by the Langevin equation
models over a small time interval can be compared to the predictions of Kolmogorov's

second hypothesis. As discussed in Chapter 2, Kolmogorov's second hypothesis implies

that (Aw)" O (EAt)*  for evenn, where 1, <<At <<, and (Aw)" =0 for oddn. As

discussed by Sawford & Borgas (1994), the nonlinear-Gaussian Langevin equation model

is consistent with these predictions. For this modglis Gaussian, and foit <<1,

rZ = C,gAt. Therefore, for even, (Aw)" = rl 0(C,gAt)”*, and the moments for odd

are zero. In contrast, the linear-skewed Langevin equation model is not consistent with
: - . —n_ n At

Kolmogorov's second hypothesis predictions sinceAfor<1, (Aw)" = r] = n<<w?>>—

T

for all n, as shown in Eq. (3.6.7).

The linear-skewed Langevin equation model does, however, result in reasonable
predictions of the velocity autocorrelation for time periods on the order of and smaller

than 7. A linear deterministic acceleration results in an exponential autocorrelation

function, c(t):wow(t)/vT(f:e“”, as shown by Eqgs. (3.4.26-27). The slope of this
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function is discontinuous and non-zerd at0, but the slope of(t) should be continuous
and zero at = 0, due to the inertia of fluid particles. Nevertheless, the exponential
autocorrelation function has the correct value of unity=a0, and, except fot/7<<1,
has been shown to be a very good approximation to observations and direct numerical
simulation results in homogeneous, isotropic, and stationary turbulence (Pope, 1994).
Hanna (1979) found it was a reasonable approximatiom €d27 using observations in

the unstable, daytime atmospheric boundary layer.

Both forms of the Langevin equation have the property that the velocity is not
differentiable with respect to time. Differentiable means lime, ,(Aw/At) exists,
where Aw = w(t + At) —w(t). The non-differentiable nature of the Langevin equation
velocity can be illustrated by using the Taylor series expansion of the linear-Gaussian
velocity equation, Eq. (3.4.30), which yields the following equation for the velocity
change, valid foidt / 7 << 1:
(ow? 0
Aw = —wAt + D—fD At%Z
T Oort 0O
where( is a Gaussian random variable with zero mean and variance of one. For non-zero

values off, thelim,, ,(Aw/At) = o0, so the velocity is not differentiable.

The linear-skewed Langevin equation (and the corresponding Kramers-Moyal expansion)
has the property that the velocity is a discontinuous function of time in a probabilistic
sense (although the velocity does have a continuous range of values). This Langevin
equation describes what is called a "jump" Markov process. In contrast, the Gaussian-
random-acceleration Langevin equation (and the corresponding Fokker-Planck equation)
describe a "continuous" Markov process (Gardiner, 1990; Gillespie, 1992). If the velocity

is a continuous function of time, then the probability thét + At) is finitely different
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from w(t) goes to zero faster thaat, as At goes to zero (Gardiner, 1990). The
discontinuous (according to this criterion) nature of the velocity for the skewed-random-
force Langevin equation, is illustrated in Appendix C using the linear-skewed Langevin
equation model. However, the velocity described by the linear-skewed Langevin equation
model is well behaved in the sense that itmgan-square continuousd.e.,

|imMW =0, where Aw = w(t + At) —w(t). In fact, all the moments of the velocity

change for the linear-skewed Langevin equation vanish for vanishing time step,
lim,, ,Aw"(At) = 0.

In summary, we expect that physically the fluid particle velocity is a differentiable and
continuous function of time, and that the acceleration is strongly correlated over very
small time intervals. However, this does not mean that the approximating stochastic
mathematical process (described by a form of the Langevin equation) need have these
properties. While some of the statistical properties of the change in velocity over short
time increments predicted by the different forms of the Langevin equation may be
physically unrealistic, as just discussed, the ensemble average properties (e.g., velocity
moments, autocorrelation) of the Langevin equation velocity are realistic. This makes
these equations useful for making predictions at the times of interest for atmospheric

dispersion problems.

3.6 Numerical simulation ofw(t)

To perform numerical simulations of particle motion using the equations for the time
evolution of particle velocityw(t), determined from the Langevin equation, we need a

method of obtaining random velocity increment&), from a probability distribution,

P(r), with momentsr"(t). For the nonlinear-Gaussian modeE{y) is Gaussian and the

first two moments of completely define this distribution (the third and higher order
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cumulants are zero). However, for the linear-skewed mdee), is non-Gaussian and

the cumulants of all orders are non-zero.

3.6.1 Nonlinear-Gaussian Langevin eguation model

The nonlinear-Gaussian Langevin equation model for the time evolution of velocity,

accurate to first order idt, was defined in Section 3.4 by

w(t + At) = w(t) + a(w(t))At +r(At), (3.6.1)
rs(At) =0, (3.6.2)

S 2w}
re(an) == at (3.6.3)

wherew(t+ At) is the numerically-calculated velocity of a particle after time Ategpven

velocity w(t) at the beginning of the time step, and the functional form for the nonlinear

a(w) was defined in Eq. (3.4.17). Values f(At) can be generated from a Gaussian

distribution using standard methods. Initial valuesvafre chosen from the bi-Gaussian

fluid velocity distribution given by Eqgs. (3.4.10-16).

3.6.2 Linear-skewed Langevin equation model

For the linear skewed Langevin equation model, the statistical propertieét)ofre

functions of an infinite number of fluid velocity moments. However, the velocity
moments of most fluids are not known with sufficient accuracy beyond the first few. This
is because the higher moments are highly dependent on the low-probability tails of the

velocity probability distribution where experimental statistics are poorest. However,
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information on only the first few velocity moments has been shown to explain tracer
dispersion in the CBL. For example, the first three velocity moments were used to define
the fluid velocity distribution for the nonlinear-Gaussian model above, and have been

used in most previous applications of Langevin equation models to CBL dispersion.

A practical difficulty, for the linear skewed model, is that even if all of the cumulants of
the fluid velocity were known, it is mathematically difficult (if not impossible) to obtain

P(r,(t)) from an infinite number of cumulants. In addition, the form R{f(t))

continually changes with time increment due to the time-dependent behavior of the

moments ofP(r(t)) (see Eqg. (3.4.23) and Appendix B). For example, the second and

third moments ofr (t), r.*(t) and r2(t), are proportional t6 at smallt, and, therefore,

- 3
the skewnessr,sg(t)/(rsz(t))/2 is proportional tot 2. So, P(rs(t)) becomes more highly
skewed as decreases. Therefore, it does not seem possible to obtain an analytic form for

P(r.) from which individual values of (t) can be selected in a numerical simulation.

(In contrast, for the nonlinear-Gaussian mod#l,.) retains the same form, a Gaussian

distribution, for allt.)

This practical difficulty will be addressed by using a simple, known functional form,

P.(r.), as an approximation to the probability distributiB(r,). P,(r.) will be defined

using the exact first three moments ofThe higher momentsiE& 4, 5, . . .) ofr(t) are,

then, defined from the functional form &,(r.), and can be calculated. Through the

relationship (3.4.23) between the moments,@f andw;, the higher moments of the fluid

velocity are, then, implicitly defined.

For the linear-skewed Langevin model, the equation we will use to numerically simulate

the particle velocity is
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w(t +At) = w(t)e ™™ +r_(At), (3.6.4)

wherew(t+ At) is the numerically-calculated velocity of a particle after time Ategven
velocity w(t) at the beginning of the time stap(At) is a random velocity increment

obtained from a probability distributioR,(r,) which has the first three moments which

are the same as the exact first three momentgAtj,

ra(a0) =0, (3.6.5a)
r2(At) =w?(1-e?*'"), and (3.6.5b)
r2.(01) = wi(1-e™) (3.6.5¢)

(see Appendix B). Egs. ( 3.6.5a, b, and c) defq& ) since it will have a functional
form defined by the first three moments. Since the first three momew(stait) depend
only on the first three moments nfand w(t), this approximation is exact for the first

three moments of.

The distributionP,(r,) that we use here is a combination of two overlapping uniform

probability distributions, and shall henceforth be referred to as a "double-block"
distribution. The form of this distribution and the determination of its parameters using

the known first three moments ofs given in Appendix C.

The higher moments of, resulting fromP,(r,) for very small timesAt/ 7 <<1, are

n-2
n-2
T B-as, (3.6.6)

_[w
sz)n_a E n+l gr

rsan (At)A'[/T<<l - (
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(see Appendix C). Using (3.4.23), the moments @it ) in terms of the fluid velocity

moments for very small time&t / 1 <<1, are

At

(A ey = <<rg(At)>> = At= n<<wf“>>7, (3.6.7)

At/T<<1

wheren=1, 2, ... (note that the property that the momentsagproach the cumulants

of rs for very small time was used in obtaining Eq. (3.6.7)). Equating (3.6.6) and (3.6.7),

i.e., rJ(At) e = Ta(At),, ..., We can now specify the higher fluid velocity cumulants,

<<wf“>>=(wf3) 54(3)“-2% n=4,5,.... (3.6.8)

(w)™ F(n+DH

(the fourth through sixth velocity moments corresponding to this equation are given in
Appendix C). So, using this approach, the higher fluid velocity cumulants (and moments)
can be defined implicitly in terms of the first three fluid velocity moments. (Note: this is
also true of the non-linear Gaussian model described earlier, for which the parameters of
the bi-Gaussian velocity distribution were defined using the first three moments of the

fluid velocity and the remaining moments are defined implicitly.)

In general,P,(r,) is only an approximation t&(r.), although they have the exact same
first three moments. For a finite time step there is numerical error in the highet) (
moments ofr(At) and, correspondingly in the higher momentsm@). However, the
higher @ = 4) moments ofy; have limiting values for small time step. These limiting
values are used to define the exact higher velocity moments for the linear-skewed
Langevin model. Then, for sufficiently small time ste@s (1 <<1), the numerical

simulation results will approach the exact solution.

This approach to simulating and defining the Langevin equation model has some

desirable aspects. First, we have a well-defined system with specified values for the
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random term coefficients{} that are in agreement with the known turbulence properties
of the fluid, namely, the first few velocity moments. Second, the first three moments of
velocity can be simulated exactly for any time step, while the higher moments are exact

in the limit of small time steps.

In order to compare calculations made with this linear-skewed Langevin equation model
directly with those made with the nonlinear-Gaussian model described above, it would be
desirable to use the same fluid velocity distribution with both models. However, while the
first three moments of the fluid velocity distribution are explicitly specified for both these
models (and, therefore, can be made the same for both models), the higher moments are
only implicitly defined for both models. In addition, while the form of the fluid velocity
distribution is explicitly specified (the bi-Gaussian distribution) for the nonlinear-
Gaussian model, it is not specified for the linear-skewed model, rather, it is the result of

the chosen form of the Langevin equation.

3.7 Numerical simulation ofz(t)

The velocity equationy = dz/dt, must be integrated to obtain an equation for the time
evolution of particle position. In integrating this equation, it is assumed that the particle
velocity varies linearly between the value calculated by the Langevin velocity equation at

the beginning of the time step(t), and the value at the end of the time stei,+ At).

This yields the following approximate position equation
z(t + At) = Z(t) + 2[w(t + At) +w(t)] At (3.7.1)

Eq. (3.7.1) results in a mean displacement that is correct thi©@(i), which is

[(t + At) - z(1)] = w(t) At - 2 a(w(t))At? + O(At?).
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(In contrast, the often-used first-order position equatiint At) = z(t) + w(t)At, results

in a mean displacement that is correct thro@jit).)

We now have methods for simulating the joint evolution of particle velocity and position,
(w(t), z(t)), and can calculate particle trajectoriesvinz) space in an unbounded flow (no
boundaries). A Monte Carlo simulation of a sampl& oihdependent particle trajectories

(each representing a realization from the ensemble of possible trajectories) can be used to
estimate ensemble average quantities such as position moments, velocity moments,
velocity autocorrelation, as well as velocity probability distributions and position
probability distributions (needed to calculate average air concentration). Next, we will
address the case of bounded flow, and the selection of new velocities when a boundary is

encountered.

3.8 Reflection boundary conditions

In a homogenous model, the interaction with boundaries must be treated with some type
of “reflection” of the vertical velocity. In the homogeneous, two-dimensional conceptual
model of the CBL that we are using, there are horizontal boundaries at the ground surface
and at the average height of the capping inversion, the horizontal mean wind is uniform,
and the statistical properties of the fluid vertical velocity fluctuations are homogeneous.
Consequently, this model does not resolve the variation of the statistical properties of the
fluid velocity in the surface layer near the bottom of the CBL and in the entrainment layer
near the top, and, correspondingly, does not model the details of possible trajectories in
these layers. Reflection boundary conditions for approximating the effect of interactions
with these layers were investigated. Three reflection boundary conditions were compared
in this work, one each in which the incident and reflected speeds are (I) positively

correlated, (II) negatively correlated and (1) uncorrelated.
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Reflection methods that assume that the magnitude of the reflected vertical velocity is
positively correlated with the magnitude of the incident velocity have been used in all
previous Langevin equation models of dispersion in the CBL. In a homogeneous model,
this would imply that air approaching the surface from the mixed layer with a strong
downdraft velocity spends relatively little time near the surface, because it is given a
relatively strong updraft velocity when it encounters the surface and, given the long
velocity correlation time, is quickly returned to the mixed layer. The observed circulation
patterns in the CBL indicate that positively correlated incident and reflected speeds may

not be the best choice for a homogeneous model.

As discussed in Chapter 2 and by Williams and Hacker (1992, 1993), air in the core of a
strong downdraft region has relatively strong downward velocity, penetrates deep into the
surface layer, spreads out away from its center, and stays near the surface while it moves
horizontally toward convergence zones that feed the updrafts (thermals) in the mixed
layer. In contrast, air in relatively weak, smaller downdraft regions or near the edges of
strong downdraft regions has relatively weaker downward velocity, will approach the

surface closer to convergence zones, and is likely to be returned to the mixed layer faster.

The effect of the observed near-surface circulation patterns might be represented best by
a method using a reflected speed whicheagativelycorrelated with the incident speed.

This would result in relatively fast descending particles being given a relatively low
magnitude reflected velocity when they encounter the surface, and remaining near the
surface for a longer time. In contrast, slower descending particles would be given a
relatively higher magnitude reflected velocity, and remain near the surface for a shorter

time.
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A third approach to reflection assumes that the reflected speedasrelatedwith the
incident speed. In other words, a particle leaves the surface with no memory of its
incoming velocity. In a homogeneous model, this approach might be justified if mixed
layer downdrafts are not coupled with updrafts in a coherent circulation, and if turbulent

motions nearer the surface have very small velocity correlation times.

As discussed by Weil (1990), Wilson and Flesch (1993), Hurley and Physick (1993), and
Thomson and Montgomery (1994), reflection methods used previously in Langevin
equation simulations of CBL dispersion have been unable to maintain a well-mixed
position and velocity distribution in a skewed, homogenous turbulent fluid. However,
Thomson and Montgomery presented a sound basis for such methods, and successfully

tested one method versus the well-mixed condition in homogeneous, skewed turbulence.

Thomson and Montgomery (1994) based their approach to velocity reflection at
boundaries on the criterion that if a trace material is well mixed in a fluid it must remain
so. Based on this criterion, the joint velocity and position probability density function of
the tracer is, therefore, the same as that of the fRiifly,z). Thomson and Montgomery

(and also an anonymous reviewer of the paper by Hurley and Physick, 1993) recognized
that a well-mixed spatial and velocity distribution will be maintained if at the height of a
boundary, just as at any other heightthe ensemble-average flux of particles with

velocity in (w, w+ dw) throughz is proportional to

@(w, z) = wP, (w, z)dw.

@(w,z) is the fraction of all particles (in an ensemble) with velocity wy (v + dw)

crossingz per unit time. Since we are assuming the velocity distribution is independent of

height so thatP,(w, z) =n,(2)P,(w; 2) =n,(2)P,(w), wheren,(z) and P,(w) are the

fluid spatial and velocity distributions, respectively, this flux may be written as follows:
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P(w,2) = wn, (2)P, (w)dw .

The probability density function for positive velocities crossing any heiglg

proportional tog(w,z), and is

o,y = W@PW)
Iwnf (2)P, (w)dw

or
P.(w) = M, w>0. (3.8.1)
J’WPf (w)dw

Similarly, the probability density function for negative velocities crossing any height is
WP, (W
PW=45—"—"— (W) . w<O0. (3.8.2)
I WP, (w)dw

The distributionsP_(w) and P,(w) can be used to describe the distribution of the
ensemble of incident and reflected velocities, respectively, at a lower boundary (the

reverse relationship holds at the upper boundary). However, they do not provide the

relationship between a specifi¢ and the resultant.. Any relationship betweew, and

w. that results in these distributions will satisfy the well-mixed condition.

One method of implementing reflection, which will be referred teefisction method, |
that results in a positive correlation between the magnitudes ahd w., is to choose
w. at the lower boundary, for example, such that

Wy

J’P+(W)dW: }P_(W)dw, w, >0, w <0, (3.8.3)
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for a givenw < 0. This makes use of the fact that the incident particle veloaities

crossing the boundary are distributed accordin@ tw). If P, (w) is Gaussian or any

other symmetric distribution, this method reduces to the simple, so-called perfect

reflection methodw, = -w..

The net flux at the boundary must be zero. This means that

—}(p(w,z)dwzjf'go(w,z)dw.

Using the definition ofg(w, z), this becomes

- j’wPf (w)dw = jiWPf (w)dw.

This criterion is met if the fluid velocity distribution has zero mean. If the mean velocity
is zero, then the normalizing constants for bBthand P_, are the same, and reflection
method I, given in Eq. (3.8.3), simplifies to

w, 0

J'WPf (W)dw = —'[WPf (wWydw, w, >0, w <0.
0 w;

This is not the only method of selecting reflected velocities that are distributed according
to P,. Two other methods will be investigated. A method that results in a negative

correlation between the magnitude wf and w,, which we will refer to aseflection

method 1] is to chosew, such that at the lower boundary, for example,

W, W,

fP+(W)dW: fP_(W)dW, w >0, w <0, (3.8.4)

Another methodreflection method Il} is to randomly select a reflected velocity value

from the distributionP, at the lower boundaryR_ at the upper boundary).
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It is convenient to introduce cumulative probability distribution functions defined as

follows:
F.,(w) :}P+(W+)dw+, w > 0, and (3.8.5)
F_(w) = }P_(W_)dw_, w< 0. (3.8.6)

The three reflection methods for selecting a new, reflected velagigfter a boundary is

encountered with incident velocity, can then be described as follows:

» Method | — Positively correlated; and w, magnitudes

Lower boundary:

Given w, <0, selectw, > 0 such thaf, (w,) =1-F_(w,) (3.8.7)

Upper boundary:
Givenw, > 0, selectw, <0 such thaF_(w,) =1-F,(w,) (3.8.8)

» Method Il — Negatively correlated; and w, magnitudes

Lower boundary:

Givenw, <0, selectw, > 0 such thaf, (w,) = F_(w,) (3.8.9)

Upper boundary:
Givenw, > 0, selectw, <0 such that_(w,) = F,(w,) (3.8.10)

» Method Il — Randonw, chosen fromP, (w)
Lower boundary:

Obtain uniform random numberon (0,1)

Selectw, such thatF, (w,) =u (3.8.11)
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Upper boundary:

Obtain uniform random numberon (0,1)

Selectw, such thatF_(w,) =u (3.8.12)

If analytic expressions are available fer(w), F,(w) and F_(w) it might be possible to
solve Egs. (3.8.7-12) fom, explicitly. For the linear-skewed Langevin model, we do not
have an analytic expression By (w). For the nonlinear-Gaussian Langevin model, we

have an analytic, bi-Gaussid?) (w), but it may not be possible to solve Egs. (3.8.7-12)

explicitly for w. (Hurley and Physick, 1993; Thomson and Montgomery, 1994).

To implement the reflection methods, we first construct table&,¢#v;) or F_(w,)
versusw;, for j = 1 ton bins, usingP;(w) calculated numerically from a Langevin
equation simulation. Given incident velocity , the corresponding value df,(w,) is
approximated by linear interpolation between the closest two table values. Then, using
the value ofF,(w,) determined from one of the three reflection methods, the reflected
velocity w, is approximated by linear interpolation between table values. In the
numerical simulations performed in this work, tables were construct&d(ef) versus

w usingn = 128 bins fromw =-12¢,, to 0 and of F,(w) versusw for n = 128 bins

fromw=0 to +120,,, using evenly spaced intervalsvaf

In order to improve the numerical accuracy of the reflection calculation, over Thomson &
Montgomery's implementation, the time step was split at the point a boundary is
encountered. In this implementation, the following steps are used when a boundary in

encountered:

(1) Assuming the velocity varied linearly betweeft) and w(t + At) during 4t, the

incident velocity and time when a boundary was encountered are calculated.
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(2) The reflected velocity is calculated using method I, 11 or IIl.

(3) The Langevin velocity equation is used with the reflected velocity and the
remainder of the time step to re-compute the final velocity at the end of the time

step.

(4) The final position is calculated, starting at the boundary, by assuming the velocity
varied linearly between the reflected velocity and the final velocity over the

remainder of the time step.

In this method, particles follow curved (quadrat)) trajectories, and are re-reflected if

they again encounter the boundary during the remainder of the time step.
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4

Model Evaluation

In this chapter, the two Langevin equation models and three reflection boundary
conditions presented in Chapter 3 are tested and evaluated. Results are presented from
simulations of idealized cases for which exact, analytic statistical propertesiodz

are known, including simulations of well-mixed spatial and velocity distributions. These
simulations are used to evaluate the statistical properties and numerical accuracy of the
models. Results are then presented from simulations of Willis and Deardorff’s laboratory
water tank experiments discussed in Chapter 2. These are used to test the ability of the

models to calculate dispersion in the convective boundary layer.

4.1 Tests in unbounded turbulence

The idealized case of dispersion in unbounded, stationary, homogeneous, skewed
turbulence was used to test the accuracy of numerical simulations versus several known
analytic results for the statistical properties of velocity and position, and to determine the

size of the numerical integration time step required for accurate solutions. One of these

analytic results is that if tracer particle initial velocities are distributed with the fluid

velocity distribution, P, (w), then tracer particle velocity distribution will remain the
same asP;(w) at all times, and, correspondingly, the tracer particle velocity moments

will remain the same as the ambient fluid velocity momem_ﬂ?s,, at all times. These

velocity moments are known for both the linear-skewed and nonlinear-Gaussian

Langevin equation models. In addition, for the nonlinear-Gaussian model, the velocity
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distribution P, (w) is a known analytic function (the bi-Gaussian distribution given in

Chapter 3). For the linear-skewed model, there are also known analytic expressions for
the time-dependent position moments, joint velocity-position moments, and velocity

autocorrelation functions (given in Appendix B).

The sources of numerical error differ somewhat between the two Langevin equation
models. Error in the calculated velocity is introduced in simulations with the nonlinear-
Gaussian Langevin equation model because the approximate velocity update equation is
accurate only througl(At), where At is the size of the numerical integration time step.

In this equation, both the deterministic term and the moments of the random term are
accurate through orded(At). In contrast, the linear-skewed Langevin equation uses a
more accurate velocity equation, which is exact for the first three moments of velocity,
because the deterministic term and the first three moments of the random term are exact.
However, for a finite time step the linear-skewed model does yield error in the fourth and
higher moments, due to the approximate distribution used for the random velocity
increment, as discussed in Chapter 3. Error in the particle position (additional to the error
in the velocity) is introduced because of the approximate position update equation, which

is accurate througld(At?) for the mean displacement, as discussed in Chapter 3.

Simulations were performed assuming steady state conditions with no boundaries and a
skewed velocity distribution. Particle initial velocities were chosen from a fluid velocity
distribution, P, (w), with zero mean, standard deviatior), and skewnes$= va/aj’;: 1

Particle positions were all initialized 1=0. Trajectories, {{(t), z(t)), i = 1,2, ..N}, for

N = 5x10° particles were calculated frots 0 to 4. The results are presented in the
following dimensionless coordinate§:=t/7, W=w/g,,, andZ = z/(awr). Simulations

with different size time stepg)T = 0.2, 0.05, and 0.01, were completed with each model

in order to determine the time step size required for accurate numerical solutions.
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For the nonlinear-Gaussian model, initial velocities were selected from the known bi-

Gaussian distribution foP, (w). For the linear-skewed model, an analytic expression for

P;(w) is not available from which to select initial velocities (although, analytic

expressions exist for all the moments). Therefore, initial guess velocity values with the
correct first three velocity moments were assigned using a double-block distribution, and
then adjusted using simulations with the linear-skewed velocity equation for a period of
21 (in retrospect, a period ofrlis sufficient) prior to the start of the simulations in order

to reach an initial velocity distribution as close as possible to the steady-state fluid

velocity distribution.

The velocity distributions calculated by the nonlinear-Gaussian modeka4 using

three different time stepg\T = 0.2, 0.05, and 0.01 are shown in Fig. 4.1, along with the
exact, analytic distribution. The calculated velocity distributions for the unbounded case,
show a strong time step dependence, due t®fA) velocity update equation. F&T

= 0.01, there is excellent agreement between the numerically-calculated distribution and
the exact distribution. There is a small departure from the correct velocity distribution

when AT = 0.05, and large departures whé&n = 0.2.

The velocity distributions calculated by the linear-skewed Langevin equation mddel at

= 4 usingAT = 0.2, 0.05, and 0.01 are shown in Fig. 4.2. The shape of this distribution
depends on the parametess,and B, of the double-block distributiorR,(ry), (see
Appendix C) used for the random term in the linear-skewed model's velocity equation.
Values of A = B= 1 were used because they resulted in reasonable agreement between

the model-predicted velocity distributions and the measured CBL velocity distributions
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Fig. 4.1. Dimensionless velocity distribution fromonlinear-Gaussian
model simulation at= 4 using three different time step8] = 0.2 (short-
dash line), 0.05 (dotted line), and 0.01 (solid line), along with analytic
velocity distribution (long-dash line), for the unbounded turbulence case.
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Fig. 4.2. Dimensionless velocity distribution frdmear-skewednodel
simulation afT= 4 using three different time stepdT = 0.2 (short-dash
line), 0.05 (dotted line), and 0.01 (solid line), for the unbounded
turbulence case.
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(shown later in this chapter). There is very little difference in the velocity distributions
(Fig. 4.2) from the simulations using the three different time steps. This shows that the
numerical accuracy of the linear-skewed model velocity equation is significantly better
than the nonlinear-Gaussian model, as expected, because the linear-skewed model uses a

velocity equation exact for the first three velocity moments.

The departures in the higher moments of velocity, which are affected by small departures
in the tails of the distributions, are not easily detected in the curves in Figs. 4.1 and 4.2.
These departures can be seen directly in the numerically calculated higher moments.
Table 4.1 gives the values for the first six velocity moments calculated by the nonlinear-
Gaussian model ak = 4 using time steps ofiT = 0.2, 0.05, and 0.01, as well as the
corresponding exact values for the fluid velocity moments. Table 4.2 presents the same
results corresponding to the linear-skewed model. The first three moments are explicitly
controlled for both models, and have the same exact values. The values of the exact
fourth and higher moments, given in Tables 4.1 and 4.2, differ between the two models,

because they use differeRt (W) distributions. For both models, decreasing the time step

has the expected effect of increasing the accuracy of the velocity moments calculated.

The nonlinear-Gaussian model requires smaller time steps than the linear-skewed model
to achieve comparable accuracy in the calculated velocity moments. For example, the
results in Table 4.2 show that for the largest time step usEd; 0.2, the linear-skewed
model's calculated first three moments are the same as the exact values, within the
statistical uncertainty (due to the finite number of particles used to estimate ensemble
averages) as measured by the standard error. The nonlinear-Gaussian model results in
Table 4.1 show that the smallest time stdp, = 0.01, is required to obtain comparable

accuracy in the first three moments. For the fourth and higher moments of velocity, a
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time step of approximatelAT = 0.01 is required to reduce the error to approximately

1% or less for both models.

Table 4.1. Dimensionless velocity momentsstandard error) calculated
usingnonlinear-Gaussiarhangevin equation model at dimensionless time
T= 4 from three simulations witB= 1 and three different time step values;

and exact fluid velocity moments.

Numerical value Exact
At/lt=0.2 At/t=0.05 At/lt=0.01 value
Wi 0.094+ 0.002 0.016% 0.001 0.003+ 0.001 0.
W2 1.179+ 0.003 1.027+ 0.002 1.004+ 0.002 1.
We | 1.182+0.008 1.020+ 0.007 1.001+ 0.007 1.
W4 | 4.867+0.026 3.921+ 0.023 3.777+£ 0.022 3.75
W° | 10.164+0.097 8.432+0.082 8.159+ 0.078 8.125
WE | 35.772+0.380 27.590+0.325 26.296+ 0.296 | 26.125

Table 4.2. Dimensionless velocity momentss{andard error) calculated
usinglinear-skewed_angevin equation model at dimensionless tirse4
from three simulations wit® = 1 and three different time step values; and

exact fluid velocity moments.

Numerical value Exact
At/t=0.2 At/t=0.05 At/t=0.01 value

W 0.000+ 0.001 0.000+ 0.001 0.000 + 0.001 0.
W2 1.002+ 0.003 1.000+ 0.003 0.999 + 0.003 1.
We 1.012+ 0.010 0.995+ 0.010 0.995 + 0.011 1.
w4 4.711£ 0.045  4.712+ 0.047 4.780 £ 0.050 4.8
W° | 12.884+0.233 13.022+ 0.252 13.456% 0.283 13.6
WE | 53.421+1.369 55.359+1.532 58.790 + 1.816 59.714

The time-step dependence of the fourth and higher moments calculated by the linear-
skewed model is evident in the results in Table 4.2. As discussed in Chap. 3, this is a

result of the fact that the fourth and higher cumulants of the random velocity increment in
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this Langevin equation model are not exact. However, from the values in Table 4.2, it can
be seen that the higher velocity moments quickly approach the limiting values (given in

Chapter 3) as the time step is decreased.

The model-predicted particle position distributions for the unbounded case were also
evaluated. Accurate prediction of position probability density is important because it is
proportional to concentration. Figure 4.3 shows the distribution of dimensionless particle
position,P(Z), atT =1 calculated by the nonlinear-Gaussian model using three different
time steps,AT = 0.2, 0.05, and 0.01. Figure 4.4 shows the same for the linear-skewed
model. These distributions were calculated by sampling particle positions within bins of
width AZ = 0.25. For the nonlinear-Gaussian model, the distributions for the simulations
with the two smaller time stepdT = 0.05 and 0.01, show only small differences,
indicating the numerical solutions are converging at these time step valuesl F00.2,

there are significant departures from the limiting distribution (for example, a 6%
difference between the peak probability of € = 0.2 distribution and théT = 0.01
distribution). In contrast, for the linear-skewed Langevin equation model there is very
little change in the model simulat&{Z) distributions for the different time steps. This
again reflects the better numerical accuracy of the linear-skewed Langevin equation
model. These results indicate that the approximate position update equation used in both

these models is quite accurate at these time steps.

The effect of the positively-skewed velocity distribution is evident in the skewed position
distribution atT = 1 in Figs. 4.3 and 4.4. There is a larger posifiviil to the
distribution, and the mode of the distribution is negative. The difference in the shapes of
the P(2) distributions reflects the differerR, (W) distributions (shown in Figs. 4.1 and

4.2) used by the two models. However, the different forms of the Langevin equation used

in these models must also contribute to the difference.
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Fig. 4.3. Particle position distributiof(Z), versus dimensionless
height,Z, atT= 1 fromnonlinear-Gaussiamodel simulation using
three different time stepsAT = 0.2 (dashed line), 0.05 (dotted
line), and 0.01 (solid line), for the unbounded turbulence case.
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Fig. 4.4. Same as Fig. 4.3, except froimear-skewedmodel
simulation.
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The mean fluid velocity is zero, so the mean position should remain zero in these
simulations. For the nonlinear-Gaussian model, Fig. 4.5 shows that the numerical error in
the mean position is probably acceptable4dr = 0.05. The error in the mean position is
at least partially due to error in the mean velocity (noted above) for the nonlinear-
Gaussian model. FOAT = 0.01, the error is extremely small. FAT = 0.2, it is much

larger.
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Fig. 4.5. Particle dimensionless mean positi¢a(T) - Z(0)), as a

function of dimensionless timd,, from thenonlinear-Gaussiaimodel
simulations using three different time ste@d, = 0.2 (dashed line), 0.05
(dotted line), and 0.01 (solid line), for the unbounded turbulence case.

For the linear-skewed model, position moments can be calculated analytically and used to
evaluate the model results. Figure 4.6 shows the dimensionless mean position,
(z(T)-Z(0)); standard deviation,o, Em%; and third moment,
m, as a function off from the linear-skewed model simulation with time

step AT = 0.2, along with the corresponding analytic solutions (see Appendix A). Fig.
4.6 shows there is excellent agreement between the numerical and analytic results even

for the longest time step used.
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Fig. 4.6. Mean, standard deviation and third moment (about initial position) of
dimensionless particle position as a function of dimensionless Tipfimm the
linear-skewednodel simulation with time stedT = 0.2 (dashed line), and the
corresponding analytic values (solid line) for the unbounded turbulence case.
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For the linear-skewed model, there are also analytic solutions for velocity autocorrelation
functions and joint velocity-position moments (see Appendix A), and these were used to
further evaluate this model. Fig. 4.7 shows plots of three velocity autocorrelation

functions, W(T)W(0), W*(T)W(0), and W*(T)W(0), as a function of from the linear-

skewed model simulation with time stefl = 0.05, along with the corresponding
analytic functions. There is excellent agreement between the numerical and analytic
results. (This is true fodT = 0.2 also, except for a small departure from the analytic

curve forW*(T)W(0), which depends on the fourth moment of velocity.) Fig. 4.8 shows

plots of the three velocity-position joint moments\N(T)(Z(T) - Z(0)),

WA(T)(Z(T) - Z(0)), and W(T)(Z(T)-Z(0))*, as a function ofT from the linear-
skewed model simulation with time stéd = 0.2, along with the corresponding analytic
functions. These results show the model is accurately simulating the evolution of particle

velocity and position as measured by these autocorrelation functions and joint moments.

In summary, both Langevin equation models can accurately simulate known statistical
properties of velocity and position for this unbounded case if sufficiently small time steps
are used. Results of tests varying the size of the numerical integration time step reflect the
increased accuracy of the velocity update equation in the linear-skewed model, compared
to the nonlinear-Gaussian model. For linear-skewed model simulations, a time step of
AT = 0.2 results in negligible error in the velocity and position distributions for this
unbounded case. For nonlinear-Gaussian model simulations, a time sAd@p=00.05

results in acceptable error.
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Fig. 4.7. Velocity autocorrelation functiong/(T)W(0), W?(T)W(0), and

W3(T)W(0), as a function off from thelinear-skewednodel simulation

with time stepAT = 0.05 (dashed line), along with the corresponding
analytic functions (solid line) for the unbounded turbulence case.



77

1.2k T T T T T T T T N T T T T T T T T T N T T T T T T T T T N T T T T T T T T
1.0 — —
A 0.8 —
o [ |
N [ —
I 0.6 — —
N — —
S -
0.2 — -
OvO 1 1 1 1 1 1 1 1 l 1 1 1 1 1 1 1 1 1 l 1 1 1 1 1 1 1 1 1 l 1 1 1 1 1 1 1 1
0 1 2 3 4
T
0'605 T T T T T T T T N T T T T T T T T T N T T T T T T T T T N T T T T T T T T E
(150% e == = === == ;
A E E
—~  — —
C)O.4C)§ E
. E E
N 0.30 E- =
~— = s |
N E E
= 020 =
4 E E
0.10 E —
0.00 1 1 1 1 1 1 1 1 l 1 1 1 1 1 1 1 1 1 l 1 1 1 1 1 1 1 1 1 l 1 1 1 1 1 1 1 1 E
0 1 2 3 4
T
1 2% T T T T T T T T N T T T T T T T T T N T T T T T T T T T N T T T T T T T T
1.0 — e
A C _
o~ 0.8— —]
~ —
& E -
I 0.6 — =
N — —
N~— — —
= 04— 7
vV — _
0.2— =
0.0 1 1 1 1 1 1 1 l 1 1 1 1 1 1 1 1 1 l 1 1 1 1 1 1 1 1 1 l 1 1 1 1 1 1 1 1
0 1 2 3 4
T

Fig. 4.8. Velocity-position joint moments, W(T)(Z(T)-2(0)),

WA(T)(Z(T) - Z(0)), and W(T)(Z(T)-2(0))?, as a function ofT from the

linear-skewed model simulation with time stdp = 0.2 (dashed line), along with
the corresponding analytic functions (solid line) for the unbounded turbulence
case.
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4.2 Well-mixed tests in bounded turbulence

Each of the three reflection boundary conditions discussed in Chapter 3, and both
Langevin equation models, were tested to determine the time step required for accurate
numerical simulations of well-mixed spatial and velocity distributions in an idealized
homogeneous, stationary, skewed, bounded flow. The presence of boundaries introduces
additional sources of numerical error (in addition to those discussed in Section 4.1)
because the incident velocity is calculated by using an approximation that the velocity
varies linearly in time over the time step in which the boundary is encountered, and
because the reflected velocity is determined using an approximate table look-up method,

as described in Chapter 3.

Simulations were performed in which particle velocities were initialized, as in the
unbounded simulations above, from a fluid velocity distribution having a skeBre$s

Initial positions were distributed uniformly between boundarieg=a0 and z=h. A

Lagrangian time scale value of= 0.5(h/ g,,) was used. Simulations were performed for
a time period of2(h/ g,,). The results from these simulations will be presented in the
following dimensionless coordinate3:=to,,/h, W=w/g,, and Z=z/h. In these
simulationsN = 5x10° particles were used. Position distributions were calculated using

20 bins between the top and bottom boundary, and were averaged 5 to 2.

To determine tables oF,(w) and F_(w) used in the reflection methods described

Chapter 3, a preliminary simulation was performed for a perioth6t,,) before the

start of final simulation fronT = 0 to 2. The average velocity distribution over this period
was used to compute tables &f(w) and F_(w). The resulting initialP(w) was
approximate, just as the velocity distribution is at any time after a steady state is reached

in a numerical simulation.
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Particle position distribution®(Z) , from simulations with different size time stegH, =

0.017, 0.057 and 0.2r, were completed using both models in order to determine the
time step size required for accurate numerical solutions. Fig. 4.9 shows the results for
reflection method Il (results from simulations using the other two reflection methods
were similar) and the nonlinear-Gaussian model uglhg= 0.057 and 0.2r. These
results show that a time step 4t = 0.057 results in error in the position distribution of

less than 3% (the correct uniform position distributioR(®) = 1), while for At = 0.2r,

there is error of up to approximately 10%. For the linear-skewed model simulations using
reflection method Ill, Fig. 4.10 shows that there are only minor departures of less than
1% from the correct uniform distribution, for botit = 0.2t and 0.05. The better
accuracy of the linear-skewed model results, compared to the nonlinear-Gaussian model,
is, again, an indication of the smaller numerical error in the linear-skewed model velocity

update equation.

The initial and final velocity distribution$2(W), from simulations usingdt = 0.057

were compared to determine if the steady-state velocity distribution is maintained. Figs.
4.11 and 4.12 show that fatt = 0.057 and reflection method Il (similar results were
obtained with the other two reflection methods), both models maintain the initial velocity

distribution very well.

Figs. 4.13 and 4.14 show well-mixed test results for the two models and for all three
reflection methods using a time st& = 0.057. The nonlinear-Gaussian model results

in Fig. 4.13 show that the departures from the well-mixed spatial distribution are less than
approximately 3% for this time step. For the linear-skewed model, Fig. 4.14 shows that
all three reflection methods result in departures of approximately 1% or less for this time

step. Results from simulations using a smaller time std#p= 0.01r, (not shown)
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produced excellent results, with less than 0.5% departure from the well-mixed spatial

distribution for both models and all three reflection methods.
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Figure 4.9. Position distributionB(Z), from twononlinear-
Gaussianmodel simulations of a well-mixed distribution
using numerical time steps @t = 0.27 (dashed line) and
0.057 (solid line), and reflection method III.
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Figure 4.10. Same as Fig. 4.9, except fiamear-skewed
model.
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Figure 4.11. Velocity distribution2(W), atT = 0 (solid line) and

T = 2 (dashed line) fromonlinear-Gaussiamodel simulation of a
well-mixed distribution using reflection method Il and numerical
time step ofAt = 0.057.
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Figure 4.12. Same as Fig. 4.11, exceptlifoear-skewedmodel
simulation.
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Figure 4.13. Position distributionB(Z), from threenonlinear-Gaussian
model simulations of a well-mixed distribution using reflection method |
(solid line), method Il (dotted line) and method IIl (dashed line), and
numerical time step oAt = 0.05r.
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In summary, both Langevin models and all three reflection methods can maintain well-
mixed spatial and velocity distributions. For nonlinear-Gaussian model simulations,
numerical error in the spatial distribution is acceptably small (less than 3%) when a time
step of At = 0.057 is used. The linear-skewed model again exhibited better numerical
accuracy than the nonlinear-Gaussian model for the same time step. For linear-skewed
model simulations, numerical error in the spatial distribution is acceptably small (1% or

less) for time steps as large As = 0.271.

4.3 CBL simulation

Willis and Deardorff's laboratory experiments, discussed in Chapter 2, were used to
evaluate the ability of the two homogeneous Langevin equation models and three
reflection methods to simulate vertical dispersion in the CBL. This experimental dataset
was used because it is unique in that (a) detailed measurementgéhathe tracer
concentration field (Willis and Deardorff, 1976a, 1976b, 1978 & 1981) and the fluid
velocity statistics (Deardorff and Willis, 1985) were made, and (b) ensemble averages
were computed from several experiments under the same conditions. In addition, the
Willis and Deardorff experimental results have been found to be in substantial agreement

with both numerical and field experiments (Briggs, 1993b).

Section 4.3.1, presents the two-dimensional conceptual model that will be used in
simulations of the CBL. In section 4.3.2, Deardorff and Willis' measured vertical velocity
distributions will be used to determine the fluid velocity variance and skewness needed as
input to the models, and to evaluate the Langevin equation models' simulated velocity
distributions. Section 4.3.3 discusses the estimation of the Lagrangian velocity correlation
time. In section 4.3.4, Willis and Deardorff’s tracer dispersion measurements will be used

as an indirect method of evaluating the modeled velocity distributions and the other
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modeling assumptions: i.e., the form of the Langevin equation and the reflection
boundary conditions. (As discussed in Chapter 3, a controlled comparison of the effects
of the different forms of the Langevin equation alone would require the same velocity
distribution be used for both models. However, while the first three moments of the
distribution can be made the same, it is not clear how the velocity distributions can be
made the same for both types of Langevin models.) Section 4.3.5 presents a discussion of

the sensitivity of the simulation results to the values of the input parameters.

4.3.1 Two-dimensional conceptual model

A simplified 2-D conceptual model of vertical dispersion and horizontal mean wind
advection in the CBL is used in this work. As discussed in Chapters 2 and 3, in this
model it is assumed that there is (1) a horizontal, impermeable boundary at the average
height of the capping inversioaz € h), (2) a horizontal, impermeable boundary at the
surface ¢ = 0), (3) a uniform horizontalx(direction) mean wind, and (4) velocity
fluctuation only in the vertical velocity componemt, The last two assumptions are
consistent with Willis and Deardorff's transformation of their dispersion observations. In
addition, we assume that the statistical properties of the fluid vertical velocity fluctuations

are homogeneous, and that mixed-layer scaling of the vertical velocity statistics is valid.

This conceptual model can be used to simplify the expression for the cross-wind-
integrated air concentration. Using Eqg. (3.1.1), the ensemble-mean cross-wind-integrated

air concentrationg(x,z,t) , can be expressed as follows:

c(x,zt)= [ dt; [ dz, [dxa(%. 2, t)P(X, 2t 5 %0.%,L), (4.3.1)
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For a continuous point sourceyX,,z,t,)= Q5(x, - x,)3(z - z), where Q is the

source strength (mass emitted per unit time) (aogcts) is the location of the source. Eq.

(4.3.1), then, simplifies to

c(x,zt)= QJ’dtOP(x,z,t P XoZaty). (4.3.2)

Displacements in the and z directions are assumed to be independent, therefore
P(x,zt) = P(x,t)P(zt). Displacements in the direction are assumed to be due only to
the mean wind velocity, and, thereforB(x,t; x.,t)) = 6((x = %) —=U(t -t,)). Using
these assumptions and transforming to relative spatial coordikates-x, and

A

Z=1z-2z and time coordinaté :5 (downwind travel time from the source), Eq. (4.3.2)
simplifies to

o(%,2) = 8 Pz,1). (4.3.3)

The Langevin equation models described in Chapter 3 are used to calculate the time
evolution of particle velocityw(t), and position,z(t). Monte Carlo simulations of a

sample ofN particle trajectories{ z(t), 1=1,2K N}, will be used to estimat®(Z,t),

and, through Eq. (4.3.3%(X,2).

Mixed-layer scaling parameters (boundary layer ddpthnd convective velocity scale,

w, ) are used to scale the numerical simulation results, as done by Willis and Deardorff for
their experimental results. Results are presented as functions of the following
dimensionless variables: downwind distanke= xw. /Uh, velocity W =w/w., and

height Z = z/h. Since the mean horizontal wind velocity, is assumed to be constant,

dimensionless downwind distan¥es the same as dimensionless downwind travel time

tw, /h. The cross-wind-integrated concentration is made dimensionless by scaling it by
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the concentration that would be found if material were uniformly distributed in the

vertical, C = cUh/Q.

4.3.2 Vertical velocity distribution

The observed dimensionless vertical velocity distributioRg\W), published by

Deardorff and Willis (1985) were analyzed to determine velocity variance and skewness
used as input to the Langevin equation models. F}{&V) curves for various heights
published in Deardorff and Willis' Fig. 16 were digitized and used to compute the
variance and skewness. The probability of the highe@ = 1.95) point plotted in these
curves (the histogram bin at the end of the positive tail of the distribution) included the
probability of that bin and all higheW values (as a result, the probability density
unrealistically increased withvV at the end of the positivé tail of the distribution
plotted in the figure). Therefore, this probability value was lowered by multiplying it by
¥%. The remainder was distributed uniformly betw&¥m 2.015 and/V = 2.535. Small
adjustments were then made to this data to ensure that the mean velocity was zero and the
total probability equaled one. However, all of these adjustments to the digitized data did
not significantly change the values of the velocity moments calculated. The values
calculated were very similar to those calculated by M.F. Hibberd (personal

communication, 1997) from these same published curves.

Table 4.3 lists the dimensionless velocity statistics calculated from the Deardorff and
Willis (1985) velocity distribution curves. At each dimensionless heighiz/h,
dimensionless values are given for the velocity varianﬁ,(fa/wf; velocity skewness,
probability of negative velocityP_; probability of positive velocityP, ; mean negative
velocity, W_/w. ; mean positive velocityw, /w. ; variance of negative velocity?, / W,

and variance of positive velocitys;, /w/.
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Table 4.3. Dimensionless velocity statistics versus dimensionless height, calculated from

velocity distributions published by Deardorff and Willis (1985) .

2

Zz g, w W, g, g,

h W_Zf S P_ P, W, W, W2 V
021 0315 0428 0.58 042 -039 053 008 0.14
040 0376 0.731 0.62 038 -0.39 0.64 0080 0.20
048 0350 0.798  0.53 047 -043 049 0.064 0.23
0.62 0397 0.814 0.61 039 -040 0.63 0.088 0.24
079 0233 1250 0.53 047 -034 038 0.038 0.18
0.89 0210 0.640 0.60 040 029 043 0.064 0.12

Deardorff and Willis also plotted measured values of variance (in their Fig. 4) and third
moment of velocity (in their Fig. 15). The variance values are similar but not identical to
those calculated from their Fig. 16 and listed in Table 4.3 here. The skewness
corresponding to the third moment values from Deardorff and Willis' Fig. 15 are
significantly higher than those listed in Table 4.3, even though Deardorff and Willis
stated that they were calculated from the same data plotted in their Fig. 16. The original
investigator did not recall any possible explanations for these differences (J.W. Deardorff,

personal communication, 1997).

The variance and skewness values in Table 4.3 were used in this work. They are
consistent with other published values for the CBL (see Lethak, 1996, for a review).
Velocity variance and skewness values for use in homogeneous Langevin equation model
simulations were obtained by averaging the values in Table 4.3. The resulting average
values ofavzvf /W,,2 =0.31andS= va/ a,, =0.78 were used in this work. The sensitivity

of the dispersion simulation results to the choice of values for these parameters will be

discussed later in this chapter.
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Velocity distributions from simulations with both Langevin models using these average
variance and skewness values were compared to the measured velocity distributions
published by Deardorff and Willis (1985). Figs. 4.15 and 4.16 show the velocity
distribution resulting from the simulations with the nonlinear-Gaussian model and linear-
skewed model, respectively, along with the measured distributions published by
Deardorff and Willis for three different heights. These calculated distributions are
averaged over a period of ¥om simulations without boundaries usidg = 0.05t (for
the nonlinear-Gaussian, this time step results in small departures from the analytic
velocity distribution, as noted in Sec. 4.1 above). Compared to the measured velocity
distributions, the calculated distributions in Figs. 4.15 and 4.16 both appear to be

reasonable representations.

4.3.3 Lagrangian correlation time

Lagrangian velocity statistics and correlation time scaleare typically not measured.
This is true of the Willis and Deardorff experiments. Estimates afe typically made

with indirect methods, in which best fit values are determined by comparing model

predictions to experimental dispersion measurements. The relationst@w? /C,¢,
presented in Chapter 3, is often used to estinmaaéong with measurements and/or
parameterizations ob’, and &. However, even ifg, and ¢ are known there is

uncertainty in the value o,.

Estimates of the value @, range from 2 to 10, with some of the latest near 3€al,
1995). Sawford (1993) proposed that part of this variation in estimatgsisfdue to the
fact thatC, has been estimated indirectly using data from experiments (for example, the

Willis and Deardorff experiments) in which the Reynolds number was not large enough

to reach the large Reynolds number limit, for whichis truly a universal constant.
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Previous Langevin equation modeling studies using the Willis and Deardorff experiments

typically usedC, = 2 (e.g., Luhar and Britter, 1989; Weil, 1989).

Fig. 4.15. Dimensionless velocity distribution from thenlinear-
Gaussian model simulation (solid line) along with the velocity
distributions observed by Deardorff and Willis (1985yYa0.21 (dotted
line), Z=0.48(dash-dot line), and=0.79(dashed line).

Fig. 4.16. Same as Fig. 4.15, but frbnear-skewednodel simulation.
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The height averaged value of the turbulent kinetic energy dissipation rate data published

by Deardorff and Willis (1985) is approximatety= 0.4(w,?/h). Using the average value
of g2 =0.31w” determined above from the same study @pe 2, this corresponds to a
value of t=0.8(h/w.). This value was used in this work. The sensitivity of the

dispersion simulations to the valueoill be discussed below.

4.3.4 Cross-wind-integrated concentration

Simulations of dispersion for the Willis and Deardorff experiments were made with both
Langevin equation models. Simulations were performed with each model using each of
the three reflection methods (the same reflection method was applied at both the top and
bottom boundaries, although they could be different, e.g., negatively correlated incident
and reflected speed at the bottom, positively correlated at the top). A time step of
At =0.057; 10 particles (sensitivity tests with & 10° particles did not result in
noticeable differences in the concentration distribution) and 20 vertical particle-position

sampling bins were used in each simulation.

For comparison with the numerical simulation results below, Fig. 4.17 shows contours of
the dimensionless cross-wind-integrated concentratigiX,Z), versus dimensionless
height,Z, and downwind distanc&, determined from Willis and Deardorff's (1976b,

1978 and 1981) laboratory experiment observations for three dimensionless source

heights: (a)Z, = 0.067, (b)Z, = 0.24, and (c¥, = 0.49.

Contours of cross-wind-integrated concentrat®(X, Z) calculated by the nonlinear-
Gaussian model for all three source heights using the three reflection methods are

presented in Fig. 4.18 (reflection method 1), Fig. 4.19 (method Il) and Fig. 4.20 (method

[11). Contours of C(X,Z) calculated using the linear-skewed model are shown in Fig.

4.21 (reflection method 1), Fig. 4.22 (method Il) and Fig. 4.23 (method IlI).
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Fig. 4.17. Smoothed contours of dimensionless cross-wind-integrated concentration,

C(X,Z), versus dimensionless height, and downwind distances, from Willis &

Deardorff (1976b, 1978, 1981) laboratory experiments for dimensionless source heights

of (a) Z,=0.067 (top figure), (b)Z,=0.24 (middle), and (c¥.=0.49 (bottom). Arrows

indicate source location.
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For both Langevin models, the choice of reflection boundary condition has the largest

effect on the simulations for the source height closest to the boundgr.067), as

might be expected. For,=0.067, the simulations with reflection method Il (shown in

Fig. 4.19 for the nonlinear-Gaussian model, and in Fig. 4.22 for the linear-skewed model)
produce initial K < 1) concentrations patterns that are in noticeably better agreement with
the observed patterns (shown in Fig. 4.17) than the simulations with reflection method I.
For all source heights, reflection method Il (negatively-correlated-speed reflection)
appears to simulate the near-surface concentration more accurately than the other two
reflection methods. The results of simulations with reflection method Il are intermediate

between those of reflection methods | and II.

For both Langevin equation models, reflection method 1l is better able to simulate the
observed behavior of the maximum concentration line than the other two reflection
methods. The observed height of the maximum concentration remains near the surface for
a time after it first encounters the surface, and, then, increases in heiglat. Edy.067

and 0.24, the experimentally observed maximum concentration line stays near the surface
for a distanceAX , of approximately 0.3 to 0.4 after it encounters the surface, and then
increases in height (see obsen@dX, Z) contours in Figs. 4.17a and 4.17b). FQr =

0.49, this distance is approximatedX = 0.2 (see Fig. 4.17c) and is associated with a
secondary maximum in the observed near-surface concentratiod a€aB, after which

the height of maximum concentration increases Xthrhese observed features are
simulated best by reflection method Il for both Langevin models (see Figs. 4.19 and
4.22). The linear-skewed model using reflection method Il is best able to simulate the
increasing height of the maximum concentration with downwind distance after it reaches

the surface (Figs. 4.22a, b & c).
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Fig. 4.18. Contours of dimensionless cross-wind-integrated concentration,
C(X,2), versus dimensionless heigld, and downwind distanceX, from
nonlinear Gaussiahangevin equation modekflection method $imulations of the

Willis & Deardorff experiments for dimensionless source heightZ&).067 (top
figure), (b) Z,=0.24 (middle), and (c¥,=0.49 (bottom).



Fig. 4.19. Same as Fig. 4.18, except froomlinear-Gaussiah.angevin equation
model,reflection method Isimulations.
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Fig. 4.20. Same as Fig. 4.18, except froomlinear-Gaussiah.angevin equation
model,reflection method Ilkimulations.
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Fig. 4.21. Same as Fig. 4.18, except frbnear-skewedLangevin equation
model,reflection method Isimulations.
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Fig. 4.22. Same as Fig. 4.18, except florear skewed.angevin equation model,
reflection method Isimulations.



Fig. 4.23. Same as Fig. 4.18, except frbnear-skewedLangevin equation
model,reflection method Ilkimulations.
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The calculated concentrations shown in Figs. 4.18-23 approach a uniform distriBution,
= 1, for largeX. This is the correct behavior when fixed, impermeable boundaries are
used at both the top and the bottom of the boundary layer, as in these calculations. In
effect, this results in concentration changing discontinuously at the boundary layer height
(Z =1). In the CBL, concentrations decrease smoothly with height over the entrainment
layer (roughly0.8<Z <12) as seen in Fig. 4.17. Correspondingly, while the calculated
concentrations approach= 1 atZ = 1 for largeX, the observed concentrations in the
Willis and Deardorff experiments approach approximafely 0.5 atZ = 1. Near the top
of the boundary layer, the nonlinear-Gaussian model results (Figs. 4.18-20) show overly
high concentrations for all three reflection methods. Possible reasons for these overly
high concentrations will be discussed in Section 4.3.6. Overly high concentrations are not
present at the top of the boundary layer in the linear-skewed model results (Figs. 4.21-

23).

Dimensionless near-surface concentration versus downwind dist@(ge)), from
simulations using the nonlinear-Gaussian model and the three reflection methods is
compared to observations from the Willis and Deardorff experiments in Fig. 4.24. The
mean square error of this nonlinear-Gaussian model simulated near-surface concentration
is plotted in Fig. 4.25 for each reflection method and each source height. The mean

n

square errorMISE) is defined here aMSE:ﬁOZ(p, -0)?, whereo, is a observed
1=1

value,p; is the model predicted value interpolated to the point of the observation,,and

is the number of observations. The standard error ofMI&E (a measure of the
uncertainty in the estimate of ttSE) is shown as error bars in Fig. 4.25. A similar
comparison of the linear-skewed model simulation results to observations is show in Fig.

4.26. TheMSEof these linear-skewed model results is plotted in Fig. 4.27.
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For both models, the choice of reflection method can noticeably affect near-surface
concentration. The best overall results are obtained using reflection method Il for both
models. However, changing the reflection method results in more significant changes in
the linear-skewed model results (Fig. 4.27) than in the nonlinear-Gaussian model results
(Fig. 4.25). The linear-skewed model and reflection method Il results (shown in Fig. 4.26,
dotted line) show the best overall agreement with the experimental observations for near-
surface concentration. This can be seen in the lower mean square error values (shown in
Fig. 4.27) for the linear-skewed/reflection-method-II (LS/Il) simulation results.Zer
0.49, the linear-skewed model predicts the location of the peak concentration better than
the nonlinear-Gaussian model, and also better than previous inhomogeneous Langevin
equation model simulations summarized byddal (1994). For both Langevin models,

reflection method I results in the poorest agreement overall.

Dimensionless mean height of the concentration distributibnyersus downwind
distance from simulations using the nonlinear-Gaussian model and the three reflection
methods is compared to observations from the Willis and Deardorff experiments in Fig.
4.28. The mean square error of the nonlinear-Gaussian model simdlageglotted in

Fig. 4.29 for each reflection method and each source height. Fig. 4.30 shows the same
comparison using the linear-skewed model. M®E of these linear-skewed model
results are plotted in Fig. 4.31. The choice of model and reflection method has the largest
effect when the release is closest to the lower boundiary,0.067. ForZ,= 0.067,
reflection method Il significantly improves the results compared to reflection method |

for both models. The nonlinear-Gaussian model results are closer to the observations than

the linear-skewed model results féf= 0.067. ForZ, = 0.24, both models perform well,
with the choice of reflection method causing only small differencesZEer 0.49, the
nonlinear-Gaussian model performs better and the choice of reflection method has little

effect.



101

C(X,0)

)
=
[ YA
HHH\H‘\HHHH‘HHHH

-
I

C(X,0)
N
HHHH‘HHH\H‘HHH\H‘\HHHH
o
[ ]

[ ]
[ ]
)
F/
i
i
i
4
NEEEEER|

(@]
N
W

2.5

2.0

°
HH‘HH‘HH

c(x,0)

e T o~

0.0 hd

2 3

(@)

X
Fig. 4.24. Calculations of dimensionless near-ground concentration for
dimensionless source height of @& = 0.067 (top figure), (b¥s = 0.24 Method |
(middle), and (c¥s = 0.49 (bottom) using the nonlinear-Gaussian Langeyin """ "" Method Il
equation model and the three reflection methods: method I (solid line), metiod— — Method Il
Il (dotted line), method Il (dashed line). Circles are data from Willis &
Deardorff experiments.
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The dimensionless standard deviation (about the source height) of the vertical distribution

: Y : : : : :
of material, g, E(Z—ZS)2 ?, versus downwind distance from simulations using the

nonlinear-Gaussian model and the three reflection methods is compared to observations
from the Willis and Deardorff experiments in Fig. 4.32. The mean square error of the
nonlinear-Gaussian model simulated is plotted in Fig. 4.33 for each reflection method

and each source height. Fig. 4.34 shows a comparison of the linear-skewed model results
and observations. THESE of these linear-skewed model results are plotted in Fig. 4.35.
For theZg = 0.067 case, the nonlinear-Gaussian model results are in better agreement
with observations, with the choice of reflection method causing small differences.
Reflection method Il significantly improves the performance of the linear-skewed model
for theZs = 0.067 case. Fids = 0.24, the linear-skewed model results are more accurate.
Both the standard deviation and the mean height of the concentration distribution are,
naturally, not affected as strongly by the choice of boundary condition in the two cases

where the sources are farther from the boundafies,0.24 and 0.49.

Table 4.4 presents the mean square error and mean fractional error of the predictions of
z/h, o,/h, and C(X,0) from simulations with nonlinear-Gaussian (N-G) and linear-
skewed (L-S) Langevin equation model using reflection methods I, II, and Ill. The mean
square errorMSE was defined and discussed above. The mean fractional MF&t,is

defined here a®FE :t"z(p,o;o,)’ and is a measure of the bias of the predictions.
1=1

Table 4.4 also presents the standard error (a measure of the uncertainty in the estimated
mean value) of th&ISEandMFE for each simulation. Considering all results for all the
experiments, there is no systematic bias in the predictionsMH&evalues do indicate

that there is a tendency for observ&(X,0) to be over predicted faf, = 0.067, and

under predicted foZs = 0.49. For the nonlinear-Gaussian model using reflection method

I, the observed near-surface concentration is over predicted by an average bfFEE% (
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= 0.1476) forZ, = 0.067, under predicted by 0.5%KE = —0.00508) foZ; = 0.24, and
under predicted by 32% fdt, = 0.49. For the linear-skewed model using reflection
method I, the observed near-surface concentration is over predicted by an average of 5%
for Z, = 0.067, under predicted by 1% far= 0.24, and under predicted by 27% IQr=
0.49.

In summary, both Langevin equation models can simulate the observed concentration
distributions reasonably well. For both Langevin equation models, simulations with
reflection method Il (negatively correlated incident and reflected speeds) result in the best
agreement with the observed concentration distributions. This improved agreement is
most notable for the experiment in which the source is closest to the boundary. When
reflection method Il is used, neither Langevin equation model’s results are significantly
better (compared to observations) than the other. The nonlinear-Gaussian model
simulations predict the mean height and standard deviation of the vertical concentration
distribution better than the linear-skewed model simulations for two out of the three
experiments. However, the linear-skewed model simulations predict the near-surface
concentration better than the nonlinear-Gaussian model simulations for most of the
observations. Possible reasons for the differences between the results of simulations using

the two models and the three reflection methods will be discussed in Section 4.3.6.
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Table 4.4. Error in model predictions estimated using observations from the Willis & Deardorff experiments for dimensiookess so
heights ofzg/h =0.067, 0.24 and 0.49. Mean square erMSE), standard error oMSE (SE MSE, mean fractional erroMMFE),
standard error o¥FE (SE MFB of predictions ofz/h, o,/h, and C(X,0) from simulations with nonlinear-Gaussian (N-G) and linear-
skewed (L-S) Langevin equation model using reflection methods I, I, and IIl.

z/h o,/h C(X,0)
z g om

Model h S W_*Z h II\?/Ieeftlh MSE SEMSE MFE SEMFE MSE SEMSE MFE SEMFE MSE SEMSE MFE SEMFE

N-G 0067 078 031 08 || 000056 0.0016 -003709 0.00777 0.00010 0.0003 004404 0.02334 070675 0.23245 0.44514| 0.12330
N-G 0067 078 031 08 || 000013 0.00004 -001263 0.00852 0.0030 0.00006 0.05092 (.02387 0.53436 0.37998 0.14760| 0.06701
N-G 0067 078 031 08 Ill| 000013 0.00003 -0.01874 000623 0.00016 0.00003 0.05439 002248 057114 0.32196 0.29275| 0.08442
N-G 0240 078 031 08 || 000008 0.00002 0.00962 0.00552 0.00089 0.00019 0.07047 (.02140 0.27160 0.05680 0.00098 | 0.10276
N-G 0240 078 031 08 II| 000026 0.00008 —000207 0.00934 0.00094 0.00016 0.07514 Q.02077 0.19335 0.04337 -0.00508 0.08754
N-G 0240 078 031 08 [l 000016 0.0005 0.00278 0.00745 0.00091 0.00016 0.07239 002090 0.23290 0.04990  0.00391 | 0.09623
N-G 0490 078 031 08 || 000063 000011 0.00654 001048 0.00090 0.00016 -006412 0.02912 044834 009510 -0.39118 0.14740
N-G 0490 078 031 08 II| 000071 000013 000715 001121 0.00085 0.00016 -0.05693 0.02930 0.41548 0.07392 -0.32165 0.15860
N-G 0490 078 031 0.8 Ill| 000067 0.00013 0.00679 0.01090 0.00086 0.00016 -005961 0.02917 0.42633 0.08282 -035114| 0.15423
L-S 0067 078 031 08 || 000706 0.00166 -0.15052 0.01987 0.00356 0.00089 -0.06532 003102 0.92419 0.24416 0.67294 0.20864
L-S 0067 078 031 08 1| 000140 000033 -008362 0.00859 0.0078 0.00015 -003153 0.02643 046914 020576 0.05067| 0.06425
L-S 0067 078 031 08 [ 000302 0.00075 -0.10458 0.01256 0.00136 0.00035 -003214 0.02634 0.37587 0.11317 0.34067 | 0.10907
L-S 0240 078 031 08 || 000025 0.00008 0.01204 0.00925 000023 0.00007 000673 (.01723 0.20258 0.04539 0.01843| 0.08180
L-S 0240 078 031 08 Il| 000005 000002 -000852 0.00507 0.00015 0.00003 001130 0.01542 0.03051 0.01275 -0.00986 0.02920
L-S 0240 078 031 08 I 000006 0.00002 0.00307 0.00535 0.00022 0.0007 001119 001672 0.08519 0.01626 0.03093 | 0.05566
L-S 0490 078 031 08 || 000105 000022 004424 001184 000097 000019 -008405 0.02821 0.24964 0.06297 -045376/ 0.08031
L-S 0490 078 031 08 Il| 000089 000017 003416 0.01160 0.00086 0.00019 -007107 0.02870 0.07912 0.01411 -0.26640 0.09479
L-S 0490 078 031 08 I 000093 0.00018 0.03613 0.01168 0.00091 0.00019 -0.07760 0.02845 0.16120 0.03747 —0.34961] 0.09155
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4.3.5 Sensitivity tests

As mentioned above, there is some variability and uncertainty in the observed values of
the fluid velocity varianceavzvf, and, in particular, in the observed values of velocity
skewnessS, and the estimated value of the Lagrangian correlation timased in the

CBL dispersion simulations just presented. Therefore, the sensitivity of the dispersion

simulation results to the values af, o>, and S was investigated. Additional

simulations for the three source heigh#s € 0.067, 0.24, and 0.49) used in the Willis

and Deardorff experiments were performed with both Langevin equation models using
reflection method Il and two alternative values for each of the three parameteﬁ,;

and S, one near the low end and one near the high end of the range of values found in the
CBL. These low-end and high-end values ave/h = 0.5 and 1.2g;, /w? = 0.2 and

0.4, andS = 0.4 and 1.2, respectively. The "best-estimate” values, used in the simulations
shown above, argw./h = 0.8, o; /w? = 0.31, andS = 0.78. Simulations were
completed for each of the three source heights with each model in which only one of
these three parameters was changed (first to the low-end and then to the high-end value)
and the other two parameters were kept at their best-estimate values (this resulted in 18
additional simulations with each model). The results of these sensitivity tests are shown
and discussed in Appendix D. In addition, two simulations were made for each of the

three source heights with each model in which all three parameters were changed together
in the following two combinations: (1jw. /h = 1.2, afvf /W*Z = 0.4, andS = 1.2; and (2)

™. /h =0.5 ,afvf /W*Z = 0.2, andS = 0.4 (this resulted in 6 additional simulations with

each model). These may be physically realistic combinations because larger values of
avzvf, and S occur together (e.g., in the middle of the CBL), while lower values occur

together (e.g., toward the bottom of the CBL).
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The simulation results are sensitive to some changes in certain input parameter values.

The results indicate that for the source height near the middle of the boundarydayer (

0.49) higher values of and/oravzvf consistently improve results for both models. This is

consistent with the higher measured valuesd;i,)fr and the higher estimated values for

that occur in the middle of the CBL. The sensitivity tests show that the overall agreement
with observations (for all three source heights) is significantly worse for both models
when the Iowesvaf value (0.2w?) is used, as well as when the lowestalue (0.5/w.)

is used. For the nonlinear-Gaussian model, agreement is significantly worse when the

highestSvalue (1.2) is used.

Considering all the simulation results for both models (the sensitivity tests shown in
Appendix D, and the original simulations shown above), the original, best-estimate
values forr=0.8n/w, avzvf =0.31w?, and S=0.78 result in relatively good agreement with
observations for all three source heights, and appear to be good values for use in a
homogeneous Langevin equation model of the CBL. However, the overall results of the
nonlinear-Gaussian model can be improved by using a smaller vatuéetween 0.4

and 0.78), along with a larger value of(between 0.8B/w. and 1.h/w. ). The overall
results of the linear-skewed model can be improved by using a larger vatugetiveen
0.8h/w. and 1.2/w. ), and were not significantly changed when using a smaller val8e of
(except for theC(X,0) results forZs = 0.49, which improved using a smaller skewness).
Given the uncertainty in these parameter values, modified values within these ranges
could be justified (for example; =1.0h/w. , S = 0.6), and would improve some of the

predictions of the models.

4.3.6_Discussion

In this section, possible reasons for the differences between the results of the two

Langevin equation models and the three reflection methods used in the CBL simulations
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will be discussed. One notable difference between the results of simulations using
different reflection methods is that method Il (negatively correlated incident and reflected
speeds) generally results in the best agreement with the observed dispersion of material
near the surface. As discussed in Chapter 3, the variation of the statistical properties of
the fluid velocity in the surface layer are not resolved in the homogenous model being
used in this work. Correspondingly, the details of possible fluid trajectories near the
surface are not simulated (e.g., the translation of vertical to horizontal motion as air in a
downdraft approaches the surface is not simulated). The CBL simulation results indicate
that reflection method Il results in the best approximation (of the three methods tested)

for the trajectories of particles near the surface for a homogeneous model.

Reflection method Il seems best able to simulate the time that descending particles, with
different velocity, spend near the surface. Relatively fast descending air in the core of a
strong, organized mixed-layer downdraft penetrates all the way through the surface layer,
as discussed in Chapter 2. Upward motion is suppressed in the downdraft. Air flows
radially outward along the surface, away from the center of the downdraft area.
Therefore, it is very plausible that air approaching the surface from the mixed layer with a
relatively high downward velocity will, on average, remain near the surface longer since
it must move horizontally from the center of the downdraft before reaching the
convergence zones that feed updrafts. Reflection method Il has this effect, by assigning a
relatively weak upward velocity when a particle with a strong downward velocity
encounters the surface. Now, air approaching the surface with a rel&divedgeed (e.g.,

in a relatively weak, narrow downdraft or near the edge of a strong downdraft where
downward speeds are smaller than in the core) will likely approach the surface closer to a
convergence line that feeds an updraft, be more quickly swept into an updraft, and,

therefore, spend relatively little time in the surface layer. Reflection method Il has this
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effect, by assigning a relatively strong upward velocity when a particle with a weak

downward velocity encounters the surface.

These arguments for reflection method Il are supported by previous numerical
simulations and observational studies. Lamb (1981) noted that Lagrangian simulations,
using 3-D LES velocity fields, of the trajectories of fluid particles released continuously
into downdrafts at approximately G.showed that particles in the core of downdrafts
descend fastest, enter the surface layer, and, on average, tend to remain in the surface
layer initially while slower descending particles enter the surface layer. As a result,
particles tend to accumulate in the surface layer for a time before moving upward, out of
the surface layer. This process is responsible for the secondary concentration maximum at
the surface observed in Lamb’s (1982) LES simulations for a source in the middle of the
CBL, as well as in Willis & Deardorff's observations show in Fig. 4.17c. The effect of
this process is also seen in the behavior, shown in Fig. 4.17, of the observed maximum
concentration line remaining near the surface for a time after it reaches the surface, and
before it begins to increase in height. This phenomena is best simulated using reflection

method Il for both Langevin equation models.

Schmidt and Schumann's (1989) LES simulations showed that, on average, fluid moves
radially outward from the centers of downdrafts along the surface and upward motion is
suppressed in the downdraft area. This fluid moves horizontally near the surface toward
convergence lines (these are “spokes” in a wheel-like pattern ) and then continues to flow
horizontally along these spokes toward "hubs" before beginning to move upward in to the
mixed layer. This indicates that air approaching the surface with a relatively strong

downward velocity (in the core of a downdraft) spends a relatively longer time, on

average, near the surface (as implied by negatively-correlated-speed reflection, method

II), and is not returned relatively quickly to the mixed layer (as implied by positively-
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correlated-speed reflection, method I). Schmidt and Schumann's simulations showed that
this circulation pattern is spatially coherent over large spatial scales (on the onjler of
Vertical motion in the middle of the CBL has a maximum correlation with horizontal
motion very close to the surface, where fluid flows into the bottom of the mixed layer
updrafts and out of the bottom of mixed layer downdrafts. This horizontal surface flow
connects mixed layer downdrafts to updrafts, which are separated, on average, by

horizontal distances of (hjo h.

Williams and Hacker (1992, 1993) presented the results of observational studies, and
developed a conceptual model of the interaction of the surface and mixed layers. Their
schematic diagram of this conceptual model includes wide downdraft regions in the
mixed layer penetrating into the surface layer, and, also, narrower, weak downdraft
regions that do not penetrate deep into the surface layer. This diagram indicates that both
the air in weaker downdrafts and the air near the edges of strong downdrafts can be more
quickly re-circulated into updrafts. This is consistent with the effect of reflection method

Based on these previous studies, it is plausible that, for particles released into downdrafts
in the mixed layer, the particles with a strong downward velocity (e.g., in the core of a
downdraft) are swept to the surface faster and then move horizontally along the surface
while slower descending particles (e.g., near the edges of downdraft areas) are still
approaching the surface. The faster-descending and slower-descending particles can then
converge near the edges of downdraft areas near the surface. Reflection method Il has
this effect, since it allows the high speed descending particles to remain closer to the

surface after reflection until slower descending particles approach the surface.
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In light of these arguments, positively-correlated-speed reflection (method 1) does not
appear to be a good approximation to particle trajectories near the surface. Using
reflection method I, a particle encountering the surface with a relatively strong downward
velocity will be assigned a relatively strong upward velocity and, given the long velocity
correlation time, will unrealistically result in the particle spending relatively little time

near the surface.

Reflection method Il results are intermediate between the best results, obtained using
method II, and the worst results, obtained with method I. This indicates that uncorrelated-
speed reflection is a better approximation than positively-correlated-speed reflection.
Reflection method IIl assigns a randomly selected reflected velocity (from the proper
distribution). Reflection method Il might be a reasonable approach if the downdrafts
were not coupled to updrafts in a coherent circulation pattern. However, the observational
and numerical studies discussed above, and the better results obtained with negatively-

correlated-speed reflection (method Il), indicate that this is not the case.

The results of the two Langevin equation models using the same reflection method are
significantly different in some cases. This must be due to one or both of the fundamental
differences between the two models: the form of the velocity distribution and the form of
the Langevin equation. The fluid velocity distributions for the two models were shown in
Figs. 4.15 and 4.16. The two forms of the Langevin equation were discussed in Chapter
3, and their deterministic terms compared in Fig. 3.1. The fluid velocity distribution
(which is used to assign initial particle velocities) completely determines the dispersion
for times much less than (in the simulations shown above, the velocity correlation time

is 0.8n/w,, corresponding to a dimensionless travel time and dimensionless downwind
distance X, of 0.8). However, at later times, it is not possible to isolate the reasons for the

differences between models from these results because the different forms of the
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Langevin equation affect the results, in addition to the different fluid velocity

distributions.

One of the differences between the results of the two Langevin equation models is found
near the top of the boundary layer. The nonlinear-Gaussian model results (Figs. 4.18-20)
show overly high concentrations for all three reflection methods. These overly high
concentrations are not present in the linear-skewed model results (Figs. 4.21-23). A
definitive explanation for this difference cannot be determined from these results.
However, the difference must be due to one or both of the fundamental differences
between the two models: the shape of the velocity distribution (shown in Figs. 4.15 and
4.16) and the form of the Langevin equation. While the overly high concentrations for the
nonlinear-Gaussian model would be decreased if a realistic entrainment layer were
resolved, similar features have been present in results from previous nonlinear-Gaussian
model studies that used more realistic inhomogeneous turbulence parameterizations
(Lubhar and Britter, 1989; Weil, 1989; [ al, 1994). It has been suggested (Weil, 1989;

Du et al, 1994) that these high concentrations may be due to unrealistic aspects of the
inhomogeneous turbulence parameterizations used in these previous studies. However,
the fact that the overly high concentrations at the top of the boundary layer do not appear
in the simulations with the linear-skewed model presented here, nor in Sawford and
Guest's (1987) simulations using an inhomogeneous linear-skewed Langevin model,
suggests that these features may also be the result of an inherent property of at least some

nonlinear-Gaussian Langevin equation models.
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5

Summary and Conclusions

This dissertation presents the development and evaluation of a Langevin equation model
for vertical dispersion of trace material in the convective boundary layer, CBL. This
model simulates the possible trajectories of fluid particles in turbulent flows that have
skewed velocity distributions and large scale turbulent structures, such as in the CBL. A
new model based on a "linear-skewed" form of the Langevin equation, which has a linear
(in velocity) deterministic acceleration and a skewed random acceleration, was
introduced. This model was developed using the simplifying assumption that the vertical
velocity distribution is spatially homogeneous, as well as skewed. Comparisons were
made between this new linear-skewed Langevin equation model and another
homogeneous model, used by previous investigators, that is based on a "nonlinear-
Gaussian" form of the Langevin equation. This nonlinear-Gaussian Langevin equation
has a nonlinear (in velocity) deterministic acceleration and a Gaussian random
acceleration. The well-mixed condition—the constraint that initially well-mixed tracer

spatial and velocity distributions must remain so—was used to develop both models.

In a homogeneous Langevin equation model, the properties of turbulence near boundaries
are not resolved, and interactions with boundaries must be handled with "reflection” of
the velocity. Three reflection boundary conditions that meet the well-mixed condition in
homogeneous, skewed turbulence were presented. These include one using the standard

assumption that the magnitudes of the incident and reflected velocities are positively
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correlated, and two alternatives in which the magnitude of these velocities are either

negatively correlated or uncorrelated.

The linear-skewed and nonlinear-Gaussian Langevin equation models were first tested
using the idealized case of unbounded, stationary, homogeneous turbulence. These
simulations were used to help determine the numerical integration time steptsize,
required for accurate simulations of particle velocy, and positiongz, using each
model. Comparison of the simulated first six velocity moments to the exact moments
(and, for the nonlinear-Gaussian model, the simulated and exact velocity probability
density function) showed that both models can accurately simulate particle velocity for a
sufficiently small time step. Examination of the particle position distributions and
position moments showed that both models can also accurately simulate particle position

for a sufficiently small time step.

While both models can accurately simulate thezf phase space trajectory of a particle,

the linear-skewed model was shown to be more accurate than the nonlinear-Gaussian
model for the same size time step. This is because the linear-skewed form of the
Langevin equation can be integrated explicitly for the case of homogeneous fluid velocity
statistics. The resulting linear-skewed model's velocity update equation is exact through
the first three moments of velocity. In contrast, the corresponding nonlinear-Gaussian

model equation is accurate only througfAt).

A comparison of the first six velocity moments calculated by the linear-skewed model to
the exact fluid velocity moments shows that the method of defining the fourth and higher
fluid velocity moments for this model using the small-time-step limit is practical; that is,

for practical values of the time step size, the calculated fourth and higher moments

approach these exact limiting values. This indicates that this is a successful approach to
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handling the problem of the time step dependence of these higher-order moments, which
arises because the linear-skewed Langevin equation model's random term has non-zero
fourth and higher order cumulants that are not explicitly controlled. In contrast, the
nonlinear-Gaussian model does not have this problem, because it uses a Gaussian random
term, for which the third and higher order cumulants are zero. However, the nonlinear-
Gaussian model does have non-zero third and higher moments of the random term, and
all the moments (first and higher) are approximate, because @(ifilg approximate

velocity update equation used here.

In spite of the approximate higher moments of the linear-skewed model's random term,
the absence of numerical error in the deterministic term and in the first three moments of
the random term for this model, makes the overall error in the velocity and position
distributions much smaller than for the nonlinear-Gaussian model. This is because the
nonlinear-Gaussian model uses &@fAt) approximate deterministic term and

O(At) approximations for all the moments of the random term.

For the linear-skewed Langevin equation model, exact, analytic expressions for the time-

dependent position moments)(t), for the joint velocity-position momentsy" (t)z"(t),

and for the autocorrelation functiongw"(t) can be determined, and were used to show

that form = 1, 2, 3 andh = 1, 2 and 3 the linear-skewed model calculations for these
guantities are very accurate. These results indicate that the velocity update equation and
the approximate position update equation simulate the joint evolution of particle velocity

and position quite accurately.

Well-mixed spatial and velocity distributions for the idealized case of bounded,
stationary, homogeneous turbulence, were used to evaluate both models. It was shown

that calculations using both models and all three reflection methods approach the correct
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well-mixed distributions as the time step is decreased. These results again showed that
the linear-skewed model can be used with longer time steps than the nonlinear-Gaussian
model and achieve the same accuracy. Acceptably small errors of 3% or less in the spatial
distribution were obtained with the linear-skewed model wdth= 0.27, while the
nonlinear-Gaussian model required a smaller time steptof 0.05r to achieve this
accuracy. Inhomogeneous Langevin models used by previous investigators have used a
time step on the order aft = 0.017 for accurate numerical solutions (e.g., less than 3%
error in the concentration from simulations of a well-mixed tracer in a bounded flow).
The homogeneous linear-skewed model, therefore, is more efficient than the
homogeneous nonlinear-Gaussian model, and considerably more efficient than

inhomogeneous models.

Observations from Willis and Deardorff's (1976a, 1976b, 1978 & 1981) laboratory
experiments were used to evaluate the ability of the two homogeneous Langevin equation
models and three reflection methods to simulate velocity distributions and tracer
dispersion in the CBL. The measured velocity distributions published by Deardorff and
Willis (1985) for several heights in the CBL were analyzed to obtain height-averaged
velocity variance and skewness values for use in these simulations. The resulting
simulated velocity distributions were reasonable representations of the observed

distributions.

The simulations of the Willis and Deardorff experiments confirmed that homogeneous
Langevin equation models can capture important aspects of dispersion from sources in
the CBL. Some aspects of the observed tracer dispersion were simulated better by the
linear-skewed model, and some simulated better by the nonlinear-Gaussian model. It was
also found that the choice of reflection boundary condition can significantly affect the

predicted concentration distribution.
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One of the main conclusions of this work is that the application of the negatively
correlated incident and reflected speed boundary condition (reflection method II)
provides a significantly better representation of dispersion within the CBL than the
standard assumption that the speeds are correlated. For both of the homogeneous-
turbulence Langevin equation models, which do not resolve the variation of the statistical
properties of the fluid velocity in the surface layer, this negatively-correlated-speed
reflection method simulates the observed dispersion of material near the surface
significantly better than either of the other two reflection methods. The effect of this
reflection method is consistent with the observed behavior of air in the core of strong
downdrafts, which penetrates deep into the surface layer, spreads out along the surface,
and spends more time near the surface than air in weaker downdrafts, on average. It is
also consistent with air in weaker downdrafts approaching the surface closer to
convergence lines that feed into updrafts, being more quickly swept into updrafts, and
spending less time near the surface. Results using the uncorrelated-speed reflection
(method Il1) are intermediate between the best results, obtained using reflection method

II, and the poorest results, obtained using positively-correlated-speed reflection method |I.

Using reflection method Il, both the nonlinear-Gaussian and linear-skewed Langevin

equation models' results are in good agreement with observations from Willis and

Deardorff's experiments. Neither model is clearly superior. Some features of the

concentration field are predicted better by one model and some by the other. The
nonlinear-Gaussian model results agree better with the observed mean height and
standard deviation of the vertical concentration distribution for the sourzes @t06h

and 0.4%. The linear-skewed model results agree better with these observed valyes for

= 0.2h. The linear-skewed model predicts more accurately the near-surface

concentration versus downwind distance, and predicts more accurately a related feature:
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the increasing height of the maximum concentration, with downwind distance, after it
reaches the surface for all three source heights. The nonlinear-Gaussian model predicts
overly high concentrations near the top of the boundary layer. This may be partly due to
unrealistic treatment of the entrainment layer. However, the fact that these features do not
appear in the simulations with a linear-skewed model suggests that these features may
also be the result of an inherent property of the nonlinear-Gaussian Langevin equation

model.

A definitive explanation for the difference in the results of the two Langevin equation
models cannot be determined from this study. However, the difference must be due to
one or both of the related differences between the two models: (1) the different shapes of
the velocity distribution (which, however, were specified to have the same first three
moments), and (2) the different forms of the Langevin equation. For the linear-skewed

model, the velocity distributionP, (w), is a result of the assumed form of the Langevin

equation. In contrast, for the nonlinear-Gaussian model, the final form of the Langevin
equation is a result of the assumed analytic fornPdfv). It is not clear how the two

models could be formulated to use the same fluid velocity distribution (to do a more
direct comparison of the two forms of the Langevin equation), but this is an area of

possible future work.

In the future, other fluid velocity distributions?,(w), could also be explored to

determine if they are superior for use in homogeneous-turbulence Langevin equation
models of CBL dispersion. While the velocity distributions used in this work are in
reasonable agreement with the experimental data, they are not unique, and alternatives

could be investigated.
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A possible future extension of this homogeneous-turbulence Langevin equation modeling
approach is to simulate dispersion across the interface between the boundary layer and
the free atmosphere, when these two layers are assumed to have different homogeneous
turbulent properties. Thomsaat al (1997) have proposed an approach to this problem.
This extension might allow better simulation of concentrations in, as well as above, the

interfacial/entrainment layer.

Of the two Langevin equation models and three reflection methods evaluated, the linear-
skewed Langevin equation model with a negatively-correlated-speed reflection boundary
condition (method Il) is recommended. The results with the linear-skewed model are
comparable overall to the nonlinear-Gaussian model results, but the linear-skewed model
is significantly more efficient and predicts near-surface concentration, which is of
primary importance for many dispersion-modeling applications, more accurately than the

nonlinear-Gaussian model.
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Appendices

Appendix A: Bi-Gaussian velocity distribution

The bi-Gaussian distribution fdaP, (w) used by Baerentsen and Berkowicz (1984) is a

linear combination of two Gaussian distributions, and can be written as follows:

P (W) = A,P, (W) + A,P,(w), (3.4.10)

where

(3.4.11, 12)

The six parameters of this distributiow,, w,, g,, g,, A,;, and A, will be specified

assuming the first three moments of the fluid velocity 0, va and va) are know.

The six parameters can be determined from the following four equations for moments

zero through three of this distribution,

A +A, =1, (A.1)
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AW, + AW, =W, =0, (A.2)
M(W2 +02) + 4, (W2 + 02) = w2, (A.3)
(302 +W7) + 2, (3m,0% + W,7) = W], (A.4)
along with two closure equations,
w, =0, (A.5)
W, = -0, (A.6)

Solving the six equations (A.1-6) for the six parameters yields

— —2 —3
W =W +8w?
A (3.4.13)

W, = =0, = 4w’
f
— —  |—=2  —3
=g W Wi B (3.4.14)
1 1 — — ) A
2w, 4w,
A =—"2_ and (3.4.15)
W, — W,
A, = ijlvT . (3.4.16)
1 2

The higher moments of the bi-Gaussian distribution are not explicitly controlled, but can

be calculated. For example, the fourth through sixth moments are
Wi = ), (307 +6W207 + W*) + A, (307 + 6W,%07 + W), (A7)
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W} = AW, (1507 +10W207 +W,*) + A, (1507 +10W,%0% + W*), (A.8)

W = ), (1507 + 4507 +15W,'07 + W) + A, (1508 + 45W,%0% +15W,°0% + W,").

(A.9)
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Appendix B: Linear-skewed Langevin equation model velocity moments,

autocorrelation functions, position moments and joint velocity-position moments

In Chapter 3 it was shown that for the linear-skewed Langevin equation, the general

equation for the time-dependent velocity cumulants is
((w)) = {(we))e™ +({r"®)), (3:4.20

wheren=1, 2,. .., and, = w(0). (Note that is the same asgin Chapter 3.) The general

expression for the time-dependent cumulantsisf

n - I_n _ A-hat
((r®))= - (1-em). (3.4.21)
Using the definition in Eq. (3.4.27),
a=1lr,

the corresponding first six momentw(t) are,

W(t) - VTOe—t/T’

W) = Wee 2! + 12 (D),

Wg(t) - VTge—Stlr + n —t/T 2(t)+r (t)

W (t) - 4 —4t/ T +6W0 —2t/T 2(t)+4WO —t/T 3('[)+I‘ (t)

wo(t) = wie'T +10wie ™ r(t) + 10wZe 2 Tr3(t) + 5wy Tré(t) + ri(t), and
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w (t) - 6 -6t/ T +15W0 —4t/T Z(t)+20WSe—3t/rr3(t)+
15w§e‘2‘”r4_(t) +BwWoe (1) +10(1)

where

r(t)=0,
() = va(l_e-zm)’

) = vT?(l— e-am)’

0 = (wf - 30 Ja-e ) 30 (1- e,

rs(t) = ( 1wawf)( e‘s“r)+1OVT$V\_/?(1—e‘2t’T)(1—e‘3t’T),and

ré() = [Wf ~15W2W! 107 + 30v7$3](1— e®') + 10\,T§2(1_ e—st/r)2

3

+15Wf (Wf 3W2 )(1 g/t _ gt +e—6t/r)+15V7?3(1_e—2t/T)

The second cumulant of for example, is determined as follows:
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(rPm)) =r*®-r®" =r’®

D (s—t)/ 1 |j
= g e A(s)ds[]
U

g0 T TAS)A(U)duds
gls—0/ Tg(u- t)/T /\(S)/\(U)>> duds

oI
i

els” t)”J’e‘“ V' 5(s— u)duds

1]
oh,r—* Oy — o%,—e

— |— J’e(s t)/re(s t)/rj'a(s U)dUdS
14243
=1
r ,T

e—2t/rD
—o-

Autocorrelation functions can be calculated by taking ritte power of the velocity
equation (3.4.19) multiplying by, and taking the ensemble average. For example, the

first three autocorrelation functions are

WOW(t) 2 —t/ r

WOWZ (t) — Wge—zur + VTOWf (1_ e—2t/r) ’

For the case of the linear-skewed Langevin equation, integration of the velocity equation

(3.4.19) yields a solution for the time evolution of particle position,



136

2(t) = 2(0) + (0)( &)+ I[l eV A(9)ds. (B.1)
4426443
=r_(t

The moments o(z(t) - zo) andr (t) can be determined from Eq. (B.1) and the definitions

of a =11 in Eq. (3.4.27) andR,} in Eq. (3.4.25). The first three moments(aft) - z,)

are

(2(t) - 2,) = wor(1-€7),
(2(t) - z,)" =wir*(1- e'“T)2 +r2(t), and

(21) - 2,)° = wir(1-e") +3wor(1- € )r 2() +1,3(1)

wherez, = z(0), and

r.(t)=0,

r2(t) = wor? %l +4e7T - - 35 and
T

- +18e—t/1’ 9e—2t/T + Ze—3t/1’ _ 11D

ro(t) = 2 - g

The expression fo(z(t) - 20)2 is the same as that obtained by Taylor (1921) using an

exponential velocity autocorrelation function (which, as discussed in Chapter 3, is a

property of a Langevin equation with a linear deterministic acceleration).
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Similarly, joint moments ofv(t) and (z(t) - z,) can be determined from Egs. (3.4.19) and

(B.1). For example,

w(t)(z(t) - z,) =wire " (1- V") + T ()T, 1),

w? (t)(Z(t) - Zo) = 2w, r(tr, (e + VTOTI’Z_(I)(l— e—t/r) + |
—3 [E— , an
WgT(e—Zt/r _ e—3t/r) + rz(t)rz(t)

W(t)(2) - 2,)° = WorZ (D" + 2Worr (O, (D(1-e7) +

W I.Z(e—3tlr — o2t 4 e—t/r) + I’(t)l’zz(t)

where

o0 =wr(l-e" ),

L W
HOOEE S

(1 e—t/r) (1+ Ze—t/r)’

reri) = v\_lfrz(l— e‘“r)g, and
rz_(t) and% were given above.

These exact expressions for the position moments and joint velocity-position moments,
can be used to examine the accuracy of the approximate position equagttiodt) =

z(t) + 3[w(t + At) + w(t)]At, (described in Chapter 3) by comparing series expansions of
the exact and approximate expressions. The result is that for the first two position

moments the exact and approximate expressions are the same t@@igh

[2(t + At) - z(t)] = w(t)At - VT%TMZ

+ O(At3),
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[2(t + At) - 2(1)]* = w? (DAL + O(At?).

The exact and approximate expressions for the following joint moments are also the same

throughO(At?):

w(t)[z(t + At) — Z(t)] = w (DAL + SN—f 3w (1) (t) Bﬁtz +0(Ar®),
0

D4Wf W(t) 5W’(t) ,
21

WA () z(t + At) — Z(t)] = Wi (DAL + EAtZ +0o(ar’),

w(b)[ z(t + At) - z(1)]* = wi(t)at® + O(At°).
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Appendix C: Linear-skewed model random velocity increment distribution

Double-block distribution

An example of the skewed "double-block" distribution used for the random velocity
incrementy (At), in the linear-skewed Langevin equation model is shown in Fig. C.1-2.
(Note thatr is the same ag used in Chapter 3.) Fig. C1 shows the two separate scaled
uniform distributionsf,(r) andfyr), defined by six parameters: the meamsandm,;
half-widths,A, and 4,; and probability densitiegq, andp,, respectively. Fig. C2 shows

the double-block probability density functioR,(r), which is a linear combination of the

two distributions:

P.(r) =fq(r) +fa(r), (C.1)
where
P, if (m-4)<rs(m+A4)
f(r) = 2
(1) Ep , elsewhere (€2)
and
0P, if (mz _Az) sSrs (WE +A2)
f = C.3
(") , elsewhere (C3)
Using (C.1-3), the general equation for the moments is
r= Ir”Pa(r)dr
o (C.49)

= Plm e a) ~(m - a) ¢ P [(m,+ ) - (m, - 4,
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Pa(r)
0.4 +—
0.2+

P1=—
0.2+

0.1
oy | el

Fig. C.1 Example of two overlapping uniform probability
density functionsfy(r,) (solid line) and,(r,) (dashed line)
with meansm; and m,; half-widths A, and A,; and
probability densitie®, andp,, respectively.

Pa(r)
e <— (p1+P2)
0.3+
0.2+
n.1 +
: i i } r
-2 -1 0 1 b

Fig. C.2.Example of double-block probability density

function which is the sum of the two overlapping uniform
distributions in Fig. 1la. This distribution has a mean of
zero, a variance of 1 and a skewness of 0.5.
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Since we know that skewness is of fundamental importance to CBL dispersion, we will
derive the six parameters of this distribution so that the desired first moment (the mean,

assumed to be zero), second momep),(and third moment((3) are obtained.

Moments zero through three then provide us with four equations:

r°=2pA, +2p,A4, =1, (C.5)

r.=mp4, +mpA, =0, (C.6)
r2=2pA2+24m?p +2p,A,° +24,m2p, = 0,2, and (C.7)
r2=24°mp +AmPp +4,°myp, + 4,mp,| = %, (C.8)

Since there are four equations and six unknowns, two more equations are required for

closure. We use the following two equations:

A7 = A’m? + B?0,” and (C.9)

A2 = A’m? + B2 2. (C.10)

A andB are positive constants which must be specified.

Solving (C.5-10) fomy, my, p1 andpy results in

e 3 6 4D3C7r6D]/2D
ml'z_zDafgﬁmEEJr c? EE (C.11)
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Q-L, and (C.12)

Py = (C.13)

where

E=1+A%

From these expressions it can be seen that the coeffgcranst be less thans.

Four parameters then define the double-block distribution: the conataamsB, and the
desired second and third moments? and (3. Through Eqgs. (C.9-13) these four
parameters completely defing, mp, p1, p2, 41, andA4, and, correspondingly, the

double-block distributionP,(r).

As a result of this procedure to defifg(r), the first, second, and third moments of the

distribution are explicitly specified, while the higher moments are implicitly defined
throughmq, mp, p1, p2, 41, andA,, and can be calculated using the general moment

equation (C.4). The highenE 4, 5, . . .) moments d?,(r) for A/t << 1 are

n-2
n (W) Eas AT - - A
ra (At)At/T<<l - DTD( 2 n-3 2n—2( +1 ADn_3En_2 |:|, n _— 4’ 51 e
w? B n+) 5
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Fluid velocity moments

The moments of(At) in the linear-skewed Langevin equation model’s velocity equation

are related to the fluid velocity moments, fift << 1, through Eq. (3.6.7):

m At
(B01req = (D)), = Folbt=n{(wi")) =,
wheren=1, 2, . . . (note that we have used the property that the momenggppfoach

the cumulants of in the small time limit).

Equating r"(At) y <y = ra(At),, .., the higher fluid velocity cumulants corresponding

to the double-block distribution are

N (W)n_z @n_z[(1+ A)n+1 ~(1- A)n+1'|Cn—3 @ B
<<wf >> = (sz)n—3§ 7 2n(n+ 1) AD™E2 5 n=4,5,....

The constant®\ andB were assigned values 8f=B = 1. These values resulted in
reasonable agreement between the linear-skewed Langevin equation model predicted
velocity distributions and experimentally determined velocity distributions published by
Deardorff and Willis (1985) and shown in Chapter 4. WAtls B = 1, the fourth, fifth,

and sixth fluid velocity moments are

—=2
W
W = —+3w; ,

Sw;

— 18w 3 5
w; = _2 +10W2w3,
5w?

—4

-+ O

ZZ 410w + 15w W] - 30WE
7Wf
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Continuity ofw(t)

As discussed in Chapter 3, the velocity described by the linear-skewed Langevin equation
model is well behaved in the sense that it is mean-square continuous, that is
lim, ,Aw?(At)=0. In fact, all the moments of the velocity change for the linear-
skewed Langevin equation vanish for vanishing time step,
IimA_OW(At):IimA_om:O, as shown by Eq. (3.6.7). However, the linear-
skewed Langevin equation describes a process in which the possible realizat@s of

or "sample paths", are not continuous functions of time.

The possible realizations of(t) are continuous functions of time if, for aay O,

P(WA’[ ; WO)dWAt

lim,, el - =0 (C.14)

where P(w,,; w,)is the probability of velocityw,, att = At, given velocityw, att =0

(Gardiner, 1990). For convenience, define

W, )dw,, .

£ t 7
| Wy ~Wo|>€

F, = IP(WA'

F. is the probability that the absolute value of the difference betweggmand w, is
greater thar. Therefore, Eg. (C.14) can be re-written as follows:

. F.
||mm_'0 Xt =0
Eq. (C.14) states that probability that the velocity atAt is finitely different than the

velocity att = 0 goes to zero faster th@t, as At goes to zero.
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We will now examine the continuity condition given by Eq. (C.14) for the linear-skewed

Langevin equation model using the double-block distribution. Consider the case where

w, =0, so that
P(wy; W) = P,(r)

(see Eq. (3.6.4)). For the continuity condition, we are interested in the small time limiting

behavior of P,(r). For At/t <<1, the parameters of double-block distributidf(r),

(with A =B = 1) become (retaining only lowest ordift terms)

—22
2w ot
w T

_ —z%mgm%
A =v2wi g

3w 2wl
= W, W DAD
2w?  3w? Ot U

m,

/2

el

A, =l +4w?=—1 .
g Moy

Therefore, forAt/T <<1

m, = O(At),

A, = o(At%),

=)

m, = — = constant,
2w,




and

p, = O(At'%),

p, = O(At).

So the continuity condition (C.14) becomes

P, (r)dr
lim i:Iim I>e
B0 A At-0 At
[fl(r) + fz(r)]dr
:limmﬂo\r>£ At
- 0
Ctimy ORCE e (dr+ (O [0
w0y i J fanydr+ [, (r)dr + [f,(r)dr0
#4243 4243 #4243 4243 0
=F-a =F_c =Fiq =F.e E
where
e _Ole-m-a)p, if(m-a)<-z
g 0, if (m —A)>-¢
E :E(_E_(mz_Az))pz, if (m,—A,)<-¢
-£2 u 0’ if (rrlz B AZ) -
F :%(ml-"Al_E)pp if (m+A4A)>¢
+el ] O, if (rnl +A1) <&
F :%(mz+A2 e)p,, if(m+4,)>¢
o 0, if (m,+A,)<¢

146



Note that lim, _,m, =lim, ,A,=constant, so that lim, ,(m, —-A,)=0 and

lim,,_,F._., =0. For positive values of,,, and F_,,, both % and % depend on

At as follows:

ofat™) - O(At'/z) ,

where small time behavior of the double-block parametersm,, A, A,, p, and p,,
given above, has been used (recall that these parameters are all positivergxcépt

So, for smalle <lim,,_,(m, +4,),

F

iy o= =0
IimAtﬂo—FA;2 =0
lim,, FAT -0

. F
lim, o A*;Z = constant

Therefore,

. F
lim —£ = constant
At -0 At
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andnot zero for alle > 0 as required for continuity. Therefore, the process described by

the skewed double-block distributionnst continuous in this sense. This discontinuous

property is due to the probability of a valuerof ¢ from block 2, F,_,, decreasing

+e21

linearly in At, and not faster thafit, as required to meet the continuity condition (C.14).

Note, however, that the probability of selecting a value éfom block 2 does decrease

to zero asAt goes to zero,
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“mmqo(ZAzpz) =0,
while the probability of selecting a value from block 1 goes to one,
limy _o(20,p,) =1.

In this sense, the change in velocity is well behaved.

In contrast, for the special case in whiB¥(r) is not skewed (i.e.,<<wf3>> =0 so that

r* =0), the smallAt behavior of the double-block parameters is

m,=-m, = O(At%),
A, =N, = O(At%),

p,=p = O(At'%),

and

F F
H &1 — |; —-£2 — |i +&1 — | +£2 —
lim,, _“mA“O_At =limy =limy_, =0.

At At

Therefore, if the random term is not skewed, the prasesmtinuous.
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Appendix D: CBL simulation sensitivity tests

As discussed in Section 4.3.5, additional CBL dispersion simulations were performed to
test the sensitivity of results to values of the input paramete@f , and S. Additional

simulations for the three source heighfs € 0.067, 0.24, and 0.49) used in the Willis &

Deardorff experiments were performed with both Langevin equation models using
reflection method Il and two alternative valuesrofavzvf, and S, one near the low end

and one near the high end of the range of values found in the CBL. These low-end and
high-end values arew. /h = 0.5 and 1.20;, /w*2 = 0.2 and 0.4, an® = 0.4 and 1.2,

respectively. The "best-estimate" values, used in the simulations shown in Chapter 4, are
w./h = 0.8, o, /w’ = 0.31, andS = 0.78. Results from simulations for each of the
three source heights with each of the two Langevin equation models are shown below.
The mean height and standard deviation of the vertical concentration distrikitang

o,, and the near-surface concentrati@{Xx,0), calculated from the simulations using

the three different values (low, best-estimate, and high) for each param,etéyf (orS)

are plotted along with observations from Willis & Deardorff's experiments in Figs. D.1

through D.18.

The mean square errdviSE) and mean fractional errdviEE) of the simulated values of

z/h, o,/h, and C(X,0) were estimated using observations from the Willis & Deardorff

Nobs

experiments. The mean square ertdSE) is defined here a!S/ISE:tZ(pI -0)?,
1=1

whereg; is a observed valug, is the model predicted value interpolated to the point of
the observation, ami,. is the number of observatiordSE is a measure of the absolute
error in the predictions. The mean fractional errffFE) is defined here as

MFE=¢§@, and is a measure of the bias of the predictions. Table D.1
1=1

presents theMSEandMFE, and the standard error (a measure of uncertainty in the

estimated mean value) of thMSEandMFE for each simulation. Considering all the



150
results, theMIFE values indicate that there is no systematic bias in predictiondMFke
values do indicate that there is a tendency for obse@{&d0) to be over predicted for
Z, = 0.067, and under predicted 6y = 0.49. Table D.2 presents the model-predicted
maximum near-surface concentratid®X,0), from each simulation, and the observed

maximum C(X,0) from the Willis & Deardorff experiments.

The simulation results indicate that o, and C(X,0), varied with different values of,
avzvf, and S in a similar manner for both Langevin equation models. As the valuasof
increased, the rate at whih and g, increases with downwind distance (travel time) is
significantly greater foZs = 0.067 and0 < X <15. ForZg = 0.24, this effect was also
present, but less pronounced. Egr= 0.49, larger values of result in a slightly faster
initial (0 < X <1) rate of decrease o and slightly faster initial rate of increase of
with downwind distance. Fafs = 0.49, larger values of also result in higher maximum
C(X,0), as well as smallex at which the maximun€(X,0) occurs. This effect was also
present forZs = 0.24, but was less pronounced. gy = 0.49, higher values of

consistently improve results for both models.

Larger values obvzvf result in a more rapid initialo(< X <1) rate of increase of with
downwind distance faZgs = 0.067 and 0.24. Fals = 0.49, larger values a]’rvzvf result in

a more rapid initial rate of decreasedfwith downwind distance. Larger values @jf

also result in a more rapid increaseadn with downwind distance, as expected, for all

three source heightZg . Larger values obvzvf also result in smalleX at which the peak

C(X,0) occurs for allZg (and also some tendency for higher p&€{K,0) values). This

effect might be explained by the increase in the magnitude of the mean negative fluid
velocity, for the modeled fluid velocity distributions, with increasia@. The only

consistent improvement in the overall results of both models (compared to the original
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simulations using the best-estimate values) was founddoer 0.49 when using the

largest value ofy, .

Larger values ofS result in a more rapid initialQ< X <1) rate of decrease i@ with
downwind distance foZs = 0.49. ForZg = 0.24, larger values 0% result in a smaller

initial rate of increase irZ with downwind distance. Fdfs = 0.067, larger values d®

result in a faster initial rate of increase Znand g, with downwind distance. Larger
values of S tended to result in higher pedk X,0). ForZs = 0.49 and 0.24, large3

results in largeKX at which the peakC(X,0) occurs . These effects might be explained by
the decrease in the magnitude of the mean negative fluid velocity, the decrease in the
variance of the negative velocity, and the increase in the total probability of a negative
velocity with increasings for the modeled fluid velocity distributions. ChangesSihave

a larger effect on the results of the nonlinear-Gaussian model than the linear-skewed
model (for the range o6 tested). The only overall improvement on the results of
simulations using the original best-estimate parameter values was found for the
nonlinear-Gaussian model when using the lowest vali&=00.4 (in particular, results

for Zs = 0.24 and 0.49 significantly improved) .

For a particular source height and a particular model, some combinations of input
parameter values significantly improve some of the resultsZ§er 0.067, the linear-
skewed model results faf and g, improve when using the largest valuesrofavzvf or

S. ForZs = 0.24 and 0.49, the nonlinear-Gaussian model result€(&r0) improve
significantly, and theZ and o, results also tend to improve, using the smallest value of
S. For Zs = 0.49, nonlinear-Gaussian model results Zor g,, and C(X,0) improve

using the largest values af or avzvf; results for the location of the maximu@(X,0)
improve using the smallest value 8f and results for the maximur@(X,0) improve

using the largest value o®. For Zg = 0.49, linear-skewed model results f@r and
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C(X,0) improve significantly when the largest values of avzvf, and S were used

together.



Lagrangian time scale sensitivity tests
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Fig. D.1. Calculations of dimensionless near-ground concentration for dimensionless source height of
(a) Zs =0.067 (top figure), (b¥s =0.24 (middle), and (cXs =0.49 (bottom) using the nonlinear-
Gaussian Langevin equation model and three values for the Lagrangian velocity correlatiowtjime:

= 0.5 (solid line), 0.8 (dotted line), 1.2 (dashed line). Circles are data from Willis & Deardorff

experiments.
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Fig. D.2. Calculations of dimensionless mean height of concentration distribution for dimensionless
source height of (aJs =0.067 (top figure), (b¥s =0.24 (middle), and (cJs =0.49 (bottom) using the
nonlinear-GaussiatLangevin equation model atitree values for the Lagrangian velocity correlation
time ™w./h = 0.5 (solid line), 0.8 (dotted line), 1.2 (dashed line). Circles are data from Willis &
Deardorff water tank experiments.
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Fig. D.3. Calculations of dimensionless standard deviation of concentration distribution for

dimensionless source heighg of (a) 0.067 (top figure), (b) 0.24 (middle), and (c) 0.49 (bottom)
using thenonlinear-Gaussiarhangevin equation model artidree values for the Lagrangian velocity
correlation time Tw., /h = 0.5 (solid line), 0.8 (dotted line), 1.2 (dashed line). Circles are data from
Willis & Deardorff water tank experiments.



156

10

C(X,0)

N
-'-.
LY ‘ L1 ‘ [ ‘ [ ‘ [

N
(6N}

__—— ——

C(X,0)
N
HHHH‘HHH\H‘HHH\H‘\HHHH
7

Go LLLLLLLLLE \HHHH‘\HHHH‘HHH\H

(@]
N

2.5

2.0

c(x,0)

0.0

N HH‘HHtHH‘HH‘HH

(@)

2
X
Fig. D.4. Calculations of dimensionless near-ground concentration for dimensionless source height of
(a) Zs =0.067 (top figure), (b¥s =0.24 (middle), and (cfs =0.49 (bottom) using thinear-skewed
Langevin equation model aridree values for the Lagrangian velocity correlation tinme, /h = 0.5
(solid line), 0.8 (dotted line), 1.2 (dashed line). Circles are data from Willis & Deardorff experiments.
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Fig. D.5. Calculations of dimensionless mean height of concentration distribution for dimensionless
source height of (aJs =0.067 (top figure), (b¥s =0.24 (middle), and (cJs =0.49 (bottom) using the
linear-skewed Langevin equation model and three values for the Lagrangian velocity correlation time:
™. /h = 0.5 (solid line), 0.8 (dotted line), 1.2 (dashed line). Circles are data from Willis & Deardorff
water tank experiments.
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Fig. D.6. Calculations of dimensionless standard deviation of concentration distribution for
dimensionless source heighg of (a) 0.067 (top figure), (b) 0.24 (middle), and (c) 0.49 (bottom)
using thelinear-skewedLangevin equation model ariiree values for the Lagrangian velocity
correlation time Tw., /h = 0.5 (solid line), 0.8 (dotted line), 1.2 (dashed line). Circles are data from
Willis & Deardorff water tank experiments.
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Velocity skewness sensitivity tests
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Fig. D.7. Calculations of dimensionless near-ground concentration for dimensionless source height of
(a) Zs =0.067 (top figure), (b¥s =0.24 (middle), and (cXs =0.49 (bottom) using theonlinear-
GaussianLangevin equation model atidree values for fluid velocity skewness= 0.4 (solid line),
0.78 (dotted line), 1.2 (dashed line). Circles are data from Willis & Deardorff experiments.
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Fig. D.8. Calculations of dimensionless mean height of concentration distribution for dimensionless
source height of (aJs =0.067 (top figure), (b¥s =0.24 (middle), and (cJs =0.49 (bottom) using the
nonlinear-GaussiarLangevin equation model artidree values for fluid velocity skewness= 0.4
(solid line), 0.78 (dotted line), 1.2 (dashed line). Circles are data from Willis & Deardorff water tank
experiments.
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Fig. D.9. Calculations of dimensionless standard deviation of concentration distribution for
dimensionless source heighg of (a) 0.067 (top figure), (b) 0.24 (middle), and (c) 0.49 (bottom)
using thenonlinear-Gaussiahangevin equation model amigree values for fluid velocity skewne&s

= 0.4 (solid line), 0.78 (dotted line), 1.2 (dashed line). Circles are data from Willis & Deardorff water
tank experiments.
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Fig. D.10. Calculations of dimensionless near-ground concentration for dimensionless source height of

(a) Zs =0.067 (top figure), (bXs =0.24 (middle), and (cfs =0.49 (bottom) using thinear-skewed

Langevin equation model atidree values for fluid velocity skewnes$= 0.4 (solid line), 0.78 (dotted

line), 1.2 (dashed line). Circles are data from Willis & Deardorff experiments.
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Fig. D.11. Calculations of dimensionless mean height of concentration distribution for dimensionless
source height of (aJs =0.067 (top figure), (b¥s =0.24 (middle), and (cJs =0.49 (bottom) using the
linear-skewed_angevin equation model ardree values for fluid velocity skewnes$= 0.4 (solid

line), 0.78 (dotted line), 1.2 (dashed line). Circles are data from Willis & Deardorff water tank

experiments.
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Fig. D.12. Calculations of dimensionless standard deviation of concentration distribution for
dimensionless source heighg of (a) 0.067 (top figure), (b) 0.24 (middle), and (c) 0.49 (bottom)
using thdinear-skewed.angevin equation model atlgree values for fluid velocity skewne&= 0.4

(solid line), 0.78 (dotted line), 1.2 (dashed line). Circles are data from Willis & Deardorff water tank
experiments.
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Velocity variance sensitivity tests
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Fig. D.13. Calculations of dimensionless near-ground concentration for dimensionless source height of
(a) Zs =0.067 (top figure), (b¥s =0.24 (middle), and (cXs =0.49 (bottom) using theonlinear-
GaussianLangevin equation model atigree values for fluid velocity variancevj( /Wf = 0.2 (solid
line), 0.31 (dotted line), 0.4 (dashed line). Circles are data from Willis & Deardorff experiments.
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Fig. D.14. Calculations of dimensionless mean height of concentration distribution for dimensionless

source height of (aJs =0.067 (top figure), (b¥s =0.24 (middle), and (cJs =0.49 (bottom) using the
nonlinear-Gaussiahangevin equation model atloree values for fluid velocity variancerzv! /Wf

0.2 (solid line), 0.31 (dotted line), 0.4 (dashed line). Circles are data from Willis & Deardorff water
tank experiments.
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Fig. D.15. Calculations of dimensionless standard deviation of concentration distribution for
dimensionless source heighg of (a) 0.067 (top figure), (b) 0.24 (middle), and (c) 0.49 (bottom)
using thenonlinear-Gaussiah.angevin equation model artdree values for fluid velocity variance

a;, /w*2 = 0.2 (solid line), 0.31 (dotted line), 0.4 (dashed line). Circles are data from Willis &
Deardorff water tank experiments.
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Fig. D.16. Calculations of dimensionless near-ground concentration for dimensionless source height of
(a) Zs =0.067 (top figure), (bXs =0.24 (middle), and (cfs =0.49 (bottom) using thinear-skewed
Langevin equation model atidree values for fluid velocity variancev'vzv' /Wf = 0.2 (solid line), 0.31
(dotted line), 0.4 (dashed line). Circles are data from Willis & Deardorff experiments.
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Fig. D.17. Calculations of dimensionless mean height of concentration distribution for dimensionless

source height of (aJs =0.067 (top figure), (b¥s =0.24 (middle), and (cJs =0.49 (bottom) using the

linear-skewed_angevin equation model aridree values for fluid velocity varianceaj' /W*Z =0.2

(solid line), 0.31 (dotted line), 0.4 (dashed line). Circles are data from Willis & Deardorff water tank
experiments.
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Fig. D.18. Calculations of dimensionless standard deviation of concentration distribution for
dimensionless source heighg of (a) 0.067 (top figure), (b) 0.24 (middle), and (c) 0.49 (bottom)

using thdinear-skewed.angevin equation model atisree values for fluid velocity varianc&rfv' /W,k2

= 0.2 (solid line), 0.31 (dotted line), 0.4 (dashed line). Circles are data from Willis & Deardorff water
tank experiments.



Table D.1. Error in model predictions estimated using observations from the Willis & Deardorff experiments for dimensiordess so
heights ofzg/h =0.067, 0.24 and 0.49. Mean square ek8E), standard error dISE (SE MSE, mean fractional erroMFE), standard

error ofMFE (SE MFB of predictions ofz/h, o,/h, andC(X,0) from simulations with nonlinear-Gaussian (N-G) and linear-skewed (L-
S) Langevin equation model using reflection method Il and a range of input values for the fluid velocity sk8whessimensionless

fluid velocity variance gy, /w?, and the dimensionless Lagrangian correlation time/h.

2/h o,/h C(X,0)
z o; W

Modd R S W2 h Gglh MSE SE MSE MFE SEMFE MSE SEMSE MFE SE MFE MSE SE MSE MFE SEMFE

NG 0067 040 020 05 I 001223 000246 025432 002261 001120 000211 -023210 |0.033%6 117170 0.26440 061216  0.14355
NG 0067 040 031 08 I 0.00069 0.00017 -0.05523 0.00814 0.00049 0.00008 -0.02140 |0.02537 052778 0.23753 0.0%406 0.07073
NG 0067 078 020 08 I 000470 0.00081 016347 002471 0.00365 0.00059 -0.117/5 |0.03122 161104 056178 050006 0.10503
NG 0067 078 031 05 I 000083 0.00018 -0.06442 0.00862 0.00019 0.00003 0.00888 |0.02576 069548 0.38372 032951 0.10120
NG 0067 078 031 08 I 0.00013 000004 -0.01263 0.00852 0.00030 0.00006 0.05092 |0.02387 053436 0.37998 0.14760  0.06701
NG 0067 078 031 12 I 000062 0.00018 002192 001121 000101 000025 007706 |002360 05533 0.37201 0.03602 0.05078
NG 0067 078 040 08 I 000144 000028 008334 001418 000251 0.00050 0.15570 002915 091359 049614 -0.00690 0.06140
NG 0067 120 031 08 I 000105 0.00021 003009 0.01579 0.00200 0.00037 012234 |0.02328 102037 0.56249 0.27480 0.07695
NG 0067 120 040 12 I 000645 000130 016012 0.02580 0.00840 0.00168 025167 |003438 086436 0.67226 0.00381 0.05013
NG 0240 040 020 05 I 0.00184 0.00043 -0.08%46 0.01488 0.00068 0.00009 -0.12609 |0.02123 0.72655 0.15443 0.01134 0.16603
NG 0240 040 031 08 I 000014 0.00004 001703 0.00587 0.00063 0.00014 0.05038 |0.01954 0.018%0 0.00434 0.04957 0.02586
NG 0240 078 020 038 I 000154 000034 007724 001733 000039 0.00010 -005870 |0.02698 110645 0.22402 000825  0.19037
NG 0240 078 031 05 I 0.00026 0.00005 -0.02979 0.00899 0.00043 0.00006 0.04111 |0.01877 03931 0.07641 001549  0.12392
NG 0240 078 031 038 I 000026 0.00008 -0.00207 0.00934 000094 0.00016 007514 002077 019335 004337 -0.00508 0.0874
NG 0240 078 031 12 I 000049 000019 001435 001067 000125 000024 008958 |0.02157 008230 002578 001935 0.05202
NG 0240 078 040 08 I 000075 0.00025 0.04801 0.01026 0.00208 0.00036 015035 |0.01936 0.02630 0.00708 0.06842 0.02281
NG 0240 120 031 038 I 000094 000023 -0.02855 001723 000120 0.00024 008621 002136 078266 0.15711 -0.00960 0.15871
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Table D.2. Comparison of model predicted maximum near-surface concentration,

C(X,0), and observed maximur@(X,0) from the Willis & Deardorff experiments for

dimensionless source heightszfh =0.067, 0.24 and 0.49. Results are shown from
simulations with the nonlinear-Gaussian (N-G) and linear-skewed (L-S) Langevin
equation models using reflection method I, 1I, and Ill, and a range of input values for the

fluid velocity skewnessS, the dimensionless fluid velocity varianaevzvf /Wf, and the
dimensionless Lagrangian correlation tinmey, /h.

z vaf TW.. Max. Max. X of max. X of max.
Model h S —% h Ref. C(X,0) C(X,0) C(X,0) C(X,0)
W, Meth. predicted observed predicted observed
N-G 0.067 040 0.20 05 Il 9.29080  7.40000 0.17500 0.12000
N-G 0.067 040 031 0.8 Il 9.18560  7.40000 0.16000 0.12000
N-G 0.067 0.78 020 0.8 Il 9.89380  7.40000 0.20000 0.12000
N-G 0.067 0.78 031 05 Il 10.02140  7.40000 0.15000 0.12000
N-G 0.067 0.78 031 0.8 I 9.12720  7.40000 0.12000 0.12000
N-G 0.067 0.78 031 0.8 Il 9.94640  7.40000 0.16000 0.12000
N-G 0.067 0.78 031 0.8 [ 9.45460  7.40000 0.12000 0.12000
N-G 0.067 0.78 0.31 1.2 Il 9.57060  7.40000 0.12000 0.12000
N-G 0.067 0.78 040 0.8 Il 9.89060  7.40000 0.12000 0.12000
N-G 0.067 120 031 0.8 Il 10.60440  7.40000 0.16000 0.12000
N-G 0.067 1.20 0.40 1.2 Il 10.32020  7.40000 0.12000 0.12000
N-G 0.240 040 020 05 I 3.01700  3.00000 0.60000 0.50000
N-G 0.240 040 031 0.8 Il 3.19140  3.00000 0.44000 0.50000
N-G 0.240 0.78 020 0.8 Il 3.29760  3.00000 0.68000 0.50000
N-G 0.240 0.78 031 05 Il 3.24420  3.00000 0.57500 0.50000
N-G 0.240 0.78 031 0.8 I 2.81420  3.00000 0.60000 0.50000
N-G 0.240 0.78 031 0.8 Il 3.25980  3.00000 0.52000 0.50000
N-G 0.240 0.78 031 0.8 [} 3.05180  3.00000 0.56000 0.50000
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